- the surfMesh classes where originally designed with limited
(protected) access to the underlying components. This is to
avoid unintentional direct changes, since these can quickly
lead to inconsistencies with the topology addressing etc.
However, if we wish to efficiently adjust surfaces, it is useful
to modify the components directly.
The compromise is to provide 'xfer' methods:
- xferFaces()
- xferPoints()
- xferZones()
These transfer the contents to an Xfer container for reuse, while
also resetting the topology addressing. To apply the changes,
the reset() method is used.
- ensure that MeshedSurface and UnsortedMeshedSurface can also work
with labelledTri faces.
- nTriangles() convenience method for meshed surfaces
- MeshedSurface::addZonesToFaces() method to copy zone information
into the labelledTri per-face region storage.
The goal is to replace the triSurface reading routines with
run-time selectable ones from surfMesh.
- triFace() now initialized with '-1', which makes it behave
equivalently to face(label).
- supply default region=0 for some labelledTri constructors.
This allows labelledTri to work more like a triFace and makes it
easier to use in templated methods and eases conversion from
triFace to a labelledTri.
- labelledTri(const labelUList&) can now be used when converting
from a face. It can have 3 values (use default region)
or 4 values (with region).
- face, triFace, labelledTri now all support construction with
initializer lists. This can be useful for certain types of code.
Eg,
triFace f1{a, b, c};
face f2{a, b, c};
labelledTri f3{a, b, c};
Work without ambiguity.
Also useful for templated methods:
FaceType f{remap[a], remap[b], remap[c]};
- Cannot pass through to underlying list constructor directly.
- As this constructor was broken, there seem to be a number of
workarounds scattered in the code. Could revisit them in the future
as part of code-style:
edgeMesh(const Xfer<pointField>&, const Xfer<edgeList>&);
CompactIOField(const IOobject&, const Xfer<Field<T>>&);
GlobalIOField(const IOobject&, const Xfer<Field<Type>>&);
IOField(const IOobject&, const Xfer<Field<Type>>&);
- Condition is there to catch cases where the vtkSurfaceFormat returns
no zones (which should never be the case), but assigns a fallback
value without first resizing.
- This format is fortunately little-used (or never used) since its
inception.
Using raw stream operators to write zones, points and faces in a
single file was not well thought out - the output content varies
with the Face template type (face, triFace, labelledFace), which
makes it not very robust at all.
The static read in OFSsurfaceFormat also has a bug - keeping
transcribed faces from being passed through.
Conclusion: removing it makes more sense that repairing and still
not having something good.
Do retain stream operators for MeshedSurface and UnsortedMeshedSurface,
since they are useful for passing around data
(eg, between processors), but they shouldn't be used for files.
- Cannot test if these older reader modules actually build,
owning largely to build issues since with paraview 3.14 (Feb 2012)
and paraview 3.98 (Dec 2012) themselves.
Improvements to the conversion utilities
Various changes associated with issue #204.
* Reduced code duplication for handling prostar conversion and IO
* Simple conversion to/from AVL/FIRE geometries
* New library basis for conversion to/from CCM geometries - handles multiple regions, conformal interfaces etc. No support for film or 2d shell geometries
* Improved infrastructure for writing VTK content. Will propagate usage through other parts of the code in the future.
See merge request !76
- relied on 'export' keyword, which was removed in commit b844867112
--
ENH: foamConfigurePaths support for additional items:
-label 32|64 specify label size
-system name specify 'system' compiler to be used
-thirdParty name specify 'ThirdParty' compiler to be used
-boost ver specify boost_version
-boostArchPath dir specify BOOST_ARCH_PATH
-cgal ver specify cgal_version
-cgalArchPath dir specify CGAL_ARCH_PATH
-clang ver specify clang_version for ThirdParty Clang
-cmake ver specify cmake_version
-fftw ver specify fffw_version
-fftwArchPath dir specify FFTW_ARCH_PATH
-metis ver specify METIS_VERSION
-metisArchPath dir specify METIS_ARCH_PATH
Added the interfacial pressure-work terms according to:
Ishii, M., Hibiki, T.,
Thermo-fluid dynamics of two-phase flow,
ISBN-10: 0-387-28321-8, 2006
While this is the most common approach to handling the interfacial
pressure-work it introduces numerical stability issues in regions of low
phase-fraction and rapid flow deformation. To alleviate this problem an
optional limiter may be applied to the pressure-work term in either of
the energy forms. This may specified in the
"thermophysicalProperties.<phase>" file, e.g.
pressureWorkAlphaLimit 1e-3;
which sets the pressure work term to 0 for phase-fractions below 1e-3.
For particularly unstable cases a limit of 1e-2 may be necessary.
The best of the current options is to use the latest version of
exuberant ctags (which has a new C++ parser) to generate both
declaration and definition tags.
gtags works to some extent and provides additional information about the
function signatures but the C++ parser is not accurate and misses scope
information. gtags can be used with the ctags parser which is effective
but looses the primary advantage of gtags being able to provide function
signatures so support has been switched-off by default.
ebrowse does not appear to be very useful for traversing the OpenFOAM
class tree and the support has been switched-off by default.
- Follow similar pattern as per boost/CGAL with the '*-none' to disable,
and '*-system' for system installations.
Also support central non-ThirdParty installations by specifying the
version as "*-system", but also providing the fully qualified
*_ARCH_PATH too.
--
ENH: Verify label and scalar sizes used in the metis header.
- ensure they match with expected values, which can be obtained via
the OpenFOAM definitions for WM_LABEL_SIZE and WM_PRECISION_OPTION