This allows single, multi-phase and VoF compressible simulations to be performed
with the accurate thermophysical property functions for liquids provided by the
liquidProperty classes. e.g. in the
multiphase/compressibleInterFoam/laminar/depthCharge2D tutorial water can now be
specified by
thermoType
{
type heRhoThermo;
mixture pureMixture;
properties liquid;
energy sensibleInternalEnergy;
}
mixture
{
H2O;
}
as an alternative to the previous less accurate representation defined by
thermoType
{
type heRhoThermo;
mixture pureMixture;
transport const;
thermo hConst;
equationOfState perfectFluid;
specie specie;
energy sensibleInternalEnergy;
}
mixture
{
specie
{
molWeight 18.0;
}
equationOfState
{
R 3000;
rho0 1027;
}
thermodynamics
{
Cp 4195;
Hf 0;
}
transport
{
mu 3.645e-4;
Pr 2.289;
}
}
However the increase in accuracy of the new simpler and more convenient
specification and representation comes at a cost: the NSRDS functions used by
the liquidProperties classes are relatively expensive to evaluate and the
depthCharge2D case takes ~14% longer to run.
Description
Base-class for thermophysical properties of solids, liquids and gases
providing an interface compatible with the templated thermodynamics
packages.
liquidProperties, solidProperties and thermophysicalFunction libraries have been
combined with the new thermophysicalProperties class into a single
thermophysicalProperties library to simplify compilation and linkage of models,
libraries and applications dependent on these classes.
The deprecated non-const tmp functionality is now on the compiler switch
NON_CONST_TMP which can be enabled by adding -DNON_CONST_TMP to EXE_INC
in the Make/options file. However, it is recommended to upgrade all
code to the new safer tmp by using the '.ref()' member function rather
than the non-const '()' dereference operator when non-const access to
the temporary object is required.
Please report any problems on Mantis.
Henry G. Weller
CFD Direct.
New base class for fluid and solid thermo: veryBasicThermo
Base class for fluid thermo: basicThermo (derived from veryBasicThermo)
Base class for solid thermo: solidThermo (derived from veryBasicThermo)
Note in next commit basicThermo -> fluidThermo, veryBasicThermo -> basicThermo
At the specie level:
hs = sensible enthalpy
ha = absolute (what was total) enthalpy
es = sensibly internal energy
ea = absolute (what was total) internal energy
At top-level
Rename total enthalpy h -> ha
Rename sensible enthalpy hs -> h
Combined h, hs, e and es thermo packages into a single structure.
Thermo packages now provide "he" function which may return either enthalpy or
internal energy, sensible or absolute according to the run-time selected form
alphaEff now returns the effective diffusivity for the particular energy which
the thermodynamics package is selected to solve for.
before:
- 'new' prefixed to camel-cased class name: eg, someClass -> newSomeClass
- 'New' prefixed to templated class name: eg, TmplClass -> NewTmplClass
- 'New' suffixed to class name: eg, someClass -> someClassNew
after:
- consistent 'New' suffixed to class name, no change of case
eg, someClass -> someClassNew
eg, TmplClass -> TmplClassNew