Now the functionality to write single graph files or log files (vs time)
may be used in the creation of any form of functionObject, not just
those relating to a mesh region.
The change from C++0x to C++11 allows all of C++11 functionality to be
used in OpenFOAM, in particular constructor delegation which avoids code
duplication or constructor helper functions. However, this also means a
change to the minimum gcc version supported which is now 4.7 rather than
4.5.
Note that gcc-4.7 does not support the entire C++11 standard but does
support all of the functionality currently needed for further OpenFOAM
development. The minimum gcc-version which supports the entire C++11
standard is 4.8 which is now the recommended minimum gcc version.
The diameter of the drops formed are obtained from the local capillary
length multiplied by the \c dCoeff coefficient which defaults to 3.3.
Reference:
Lefebvre, A. (1988).
Atomization and sprays
(Vol. 1040, No. 2756). CRC press.
Changed default mode of operation to use standard y+ based switching
rather than the previous ad hoc blending and added consistent handling
of the near-wall generation term.
This boundary condition provides a wall constraint on turbulnce specific
dissipation, omega for both low and high Reynolds number turbulence models.
The near-wall omega may be either blended between the viscous region and
logarithmic region values using:
\f[
\omega = sqrt(\omega_{vis}^2 + \omega_{log}^2)
\f]
where
\vartable
\omega_{vis} | omega in viscous region
\omega_{log} | omega in logarithmic region
\endvartable
see eq.(15) of:
\verbatim
Menter, F., Esch, T.
"Elements of Industrial Heat Transfer Prediction"
16th Brazilian Congress of Mechanical Engineering (COBEM),
Nov. 2001
\endverbatim
or switched between these values based on the laminar-to-turbulent y+ value
derived from kappa and E. Recent tests have shown that the standard
switching method provides more accurate results for 10 < y+ < 30 when used
with high Reynolds number wall-functions and both methods provide accurate
results when used with continuous wall-functions. Based on this the
standard switching method is used by default.
This boundary condition provides a turbulence dissipation wall constraint
for low- and high-Reynolds number turbulence models.
The condition can be applied to wall boundaries for which it
- calculates \c epsilon and \c G
- specifies the near-wall epsilon value
where
\vartable
epsilon | turblence dissipation field
G | turblence generation field
\endvartable
The model switches between laminar and turbulent functions based on the
laminar-to-turbulent y+ value derived from kappa and E.
Recent tests have shown that this formulation is more accurate than
the standard high-Reynolds number form for 10 < y+ < 30 with both
standard and continuous wall-functions.
Replaces epsilonLowReWallFunction and should be used for all
low-Reynolds number models for which the epsilonLowReWallFunction BC was
recommended.
of film flow on an inclined plane by Brun et.al.
Brun, P. T., Damiano, A., Rieu, P., Balestra, G., & Gallaire, F. (2015).
Rayleigh-Taylor instability under an inclined plane.
Physics of Fluids (1994-present), 27(8), 084107.
Until C++ supports 'concepts' the only way to support construction from
two iterators is to provide a constructor of the form:
template<class InputIterator>
List(InputIterator first, InputIterator last);
which for some types conflicts with
//- Construct with given size and value for all elements
List(const label, const T&);
e.g. to construct a list of 5 scalars initialized to 0:
List<scalar> sl(5, 0);
causes a conflict because the initialization type is 'int' rather than
'scalar'. This conflict may be resolved by specifying the type of the
initialization value:
List<scalar> sl(5, scalar(0));
The new initializer list contructor provides a convenient and efficient alternative
to using 'IStringStream' to provide an initial list of values:
List<vector> list4(IStringStream("((0 1 2) (3 4 5) (6 7 8))")());
or
List<vector> list4
{
vector(0, 1, 2),
vector(3, 4, 5),
vector(6, 7, 8)
};
References:
Savill, A. M. (1993).
Some recent progress in the turbulence modelling of by-pass transition.
Near-wall turbulent flows, 829-848.
Savill, A. M. (1996).
One-point closures applied to transition.
In Turbulence and transition modelling (pp. 233-268).
Springer Netherlands.
Based on case contributed by Florian Schwertfirm, Kreuzinger und Manhart Turbulenz GmbH.
Description
Langtry-Menter 4-equation transitional SST model
based on the k-omega-SST RAS model.
References:
Langtry, R. B., & Menter, F. R. (2009).
Correlation-based transition modeling for unstructured parallelized
computational fluid dynamics codes.
AIAA journal, 47(12), 2894-2906.
Menter, F. R., Langtry, R., & Volker, S. (2006).
Transition modelling for general purpose CFD codes.
Flow, turbulence and combustion, 77(1-4), 277-303.
Langtry, R. B. (2006).
A correlation-based transition model using local variables for
unstructured parallelized CFD codes.
Phd. Thesis, Universität Stuttgart.
Implemented by Henry G. Weller, CFD Direct in collaboration with Florian
Schwertfirm, Kreuzinger und Manhart Turbulenz GmbH.