- Global functions are unary or combining binary functions, which are
defined in MinMax.H (MinMaxOps.H).
There are also global reduction functions (gMinMax, gMinMaxMag)
as well as supporting 'Op' classes:
- minMaxOp, minMaxEqOp, minMaxMagOp, minMaxMagEqOp
Since the result of the functions represents a content reduction
into a single MinMax<T> value (a min/max pair), field operations
returning a field simply do not make sense.
- Implemented for lists, fields, field-fields, DimensionedField,
GeometricField (parallel reducing, with boundaries).
- Since the minMax evaluates during its operation, this makes it more
efficient for cases where both min/max values are required since it
avoids looping twice through the data.
* Changed GeometricField writeMinMax accordingly.
ENH: clip as field function
- clipping provides a more efficient, single-pass operation to apply
lower/upper limits on single or multiple values.
Examples,
scalarMinMax limiter(0, 1);
limiter.clip(value)
-> returns a const-ref to the value if within the range, or else
returns the appropriate lower/upper limit
limiter.inplaceClip(value)
-> Modifies the value if necessary to be within lower/upper limit
Function calls
clip(value, limiter)
-> returns a copy after applying lower/upper limit
clip(values, limiter)
-> returns a tmp<Field> of clipped values
Foam::direction is an unsigned type which makes it easier for the
compiler to pickup and report errors in the instantiation of
VectorSpaces and associated types.
To compile with 64bit labels set
WM_LABEL_SIZE=64
in ~/OpenFOAM/dev/prefs.sh
source ~/.bashrc
then Allwmake in OpenFOAM-dev.
This will build into for example OpenFOAM-dev/platforms/linux64ClangDPInt64Opt
If WM_LABEL_SIZE is unset or set to 32:
WM_LABEL_SIZE=32
the build would be placed into OpenFOAM-dev/platforms/linux64ClangDPInt32Opt
Thus both 32bit and 64bit label builds can coexist without problem.