Commit Graph

7 Commits

Author SHA1 Message Date
357042c801 TUT: Updates for combustionModel = none. See #867 2018-06-14 14:45:32 +01:00
22aae2816d ENH: combustionModels: Changed the construction order
The combustion and chemistry models no longer select and own the
thermodynamic model; they hold a reference instead. The construction of
the combustion and chemistry models has been changed to require a
reference to the thermodyanmics, rather than the mesh and a phase name.

At the solver-level the thermo, turbulence and combustion models are now
selected in sequence. The cyclic dependency between the three models has
been resolved, and the raw-pointer based post-construction step for the
combustion model has been removed.

The old solver-level construction sequence (typically in createFields.H)
was as follows:

    autoPtr<combustionModels::psiCombustionModel> combustion
    (
        combustionModels::psiCombustionModel::New(mesh)
    );

    psiReactionThermo& thermo = combustion->thermo();

    // Create rho, U, phi, etc...

    autoPtr<compressible::turbulenceModel> turbulence
    (
        compressible::turbulenceModel::New(rho, U, phi, thermo)
    );

    combustion->setTurbulence(*turbulence);

The new sequence is:

    autoPtr<psiReactionThermo> thermo(psiReactionThermo::New(mesh));

    // Create rho, U, phi, etc...

    autoPtr<compressible::turbulenceModel> turbulence
    (
        compressible::turbulenceModel::New(rho, U, phi, *thermo)
    );

    autoPtr<combustionModels::psiCombustionModel> combustion
    (
        combustionModels::psiCombustionModel::New(*thermo, *turbulence)
    );

ENH: combustionModel, chemistryModel: Simplified model selection

The combustion and chemistry model selection has been simplified so
that the user does not have to specify the form of the thermodynamics.

Examples of new combustion and chemistry entries are as follows:

    In constant/combustionProperties:

        combustionModel PaSR;

        combustionModel FSD;

    In constant/chemistryProperties:

        chemistryType
        {
            solver          ode;
            method          TDAC;
        }

All the angle bracket parts of the model names (e.g.,
<psiThermoCombustion,gasHThermoPhysics>) have been removed as well as
the chemistryThermo entry.

The changes are mostly backward compatible. Only support for the
angle bracket form of chemistry solver names has been removed. Warnings
will print if some of the old entries are used, as the parts relating to
thermodynamics are now ignored.

ENH: combustionModel, chemistryModel: Simplified model selection

Updated all tutorials to the new format

STYLE: combustionModel: Namespace changes

Wrapped combustion model make macros in the Foam namespace and removed
combustion model namespace from the base classes. This fixes a namespace
specialisation bug in gcc 4.8. It is also somewhat less verbose in the
solvers.

This resolves bug report https://bugs.openfoam.org/view.php?id=2787

ENH: combustionModels: Default to the "none" model

When the constant/combustionProperties dictionary is missing, the solver
will now default to the "none" model. This is consistent with how
radiation models are selected.
2017-11-23 16:57:12 +00:00
a9741cea79 ENH: additional text expansion shortcuts (issue #792)
Support the following expansions when they occur at the start of a
string:

    Short-form       Equivalent
    =========       ===========
      <etc>/          ~OpenFOAM/   (as per foamEtcFile)
      <case>/         $FOAM_CASE/
      <constant>/     $FOAM_CASE/constant/
      <system>/       $FOAM_CASE/system/

These can be used in fileName expansions to improve clarity and reduce
some typing

     "<constant>/reactions"   vs  "$FOAM_CASE/constant/reactions"
2018-04-10 13:41:41 +02:00
a9ffcab5af ENH: region-wise decomposition specification for decomposeParDict
Within decomposeParDict, it is now possible to specify a different
  decomposition method, methods coefficients or number of subdomains
  for each region individually.

  The top-level numberOfSubdomains remains mandatory, since this
  specifies the number of domains for the entire simulation.
  The individual regions may use the same number or fewer domains.

  Any optional method coefficients can be specified in a general
  "coeffs" entry or a method-specific one, eg "metisCoeffs".

  For multiLevel, only the method-specific "multiLevelCoeffs" dictionary
  is used, and is also mandatory.

----

ENH: shortcut specification for multiLevel.

  In addition to the longer dictionary form, it is also possible to
  use a shorter notation for multiLevel decomposition when the same
  decomposition method applies to each level.
2017-11-09 12:30:24 +01:00
c792a9d7df TUT: script cleanup, provide cleanCase0 for commonly used operation 2017-10-12 19:20:56 +02:00
ffb0409942 TUT: Tutorial updates - see #600 2017-09-26 12:25:50 +01:00
791e1ca2d2 Merged reactingParcelFilmFoam into reactingParcelFoam
The combined solver includes the most advanced and general functionality from
each solver including:

    Continuous phase
    Lagrangian multiphase parcels
    Optional film
    Continuous and Lagrangian phase reactions
    Radiation
    Strong buoyancy force support by solving for p_rgh

The reactingParcelFoam and reactingParcelFilmFoam tutorials have been combined
and updated.
2017-08-29 09:33:45 +01:00