XiEngineFoam is a premixed/partially-premixed combustion engine solver which
exclusively uses the Xi flamelet combustion model.
engineFoam is a general engine solver for inhomogeneous combustion with or
without spray supporting run-time selection of the chemistry-based combustion
model.
Standard crank-connecting rod and the new free-piston kinematics motion options
are provides, others can easily be added.
Contributed by Francesco Contino and Nicolas Bourgeois, BURN Research Group.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2785
ENH: compressibleInterFoam family: merged two-phase momentum stress modelling from compressibleInterPhaseTransportFoam
The new momentum stress model selector class
compressibleInterPhaseTransportModel is now used to select between the options:
Description
Transport model selection class for the compressibleInterFoam family of
solvers.
By default the standard mixture transport modelling approach is used in
which a single momentum stress model (laminar, non-Newtonian, LES or RAS) is
constructed for the mixture. However if the \c simulationType in
constant/turbulenceProperties is set to \c twoPhaseTransport the alternative
Euler-Euler two-phase transport modelling approach is used in which separate
stress models (laminar, non-Newtonian, LES or RAS) are instantiated for each
of the two phases allowing for different modeling for the phases.
Mixture and two-phase momentum stress modelling is now supported in
compressibleInterFoam, compressibleInterDyMFoam and compressibleInterFilmFoam.
The prototype compressibleInterPhaseTransportFoam solver is no longer needed and
has been removed.
- Instead of relying on #inputMode to effect a global change it is now
possible (and recommended) to a temporary change in the inputMode
for the following entry.
#default : provide default value if entry is not already defined
#overwrite : silently remove a previously existing entry
#warn : warn about duplicate entries
#error : error if any duplicate entries occur
#merge : merge sub-dictionaries when possible (the default mode)
This is generally less cumbersome than the switching the global
inputMode. For example to provide a set of fallback values.
#includeIfPresent "user-files"
...
#default value uniform 10;
vs.
#includeIfPresent "user-files"
#inputMode protect
...
value uniform 10;
#inputMode merge // _Assuming_ we actually had this before
These directives can also be used to suppress the normal dictionary
merge semantics:
#overwrite dict { entry val; ... }
Note: performs its own tracking and does not rely on the base
particle::trackXXX functions, and uses a local particle position.
Look to update to barycentric tracking in the future.
The combined solver includes the most advanced and general functionality from
each solver including:
Continuous phase
Lagrangian multiphase parcels
Optional film
Continuous and Lagrangian phase reactions
Radiation
Strong buoyancy force support by solving for p_rgh
The reactingParcelFoam and reactingParcelFilmFoam tutorials have been combined
and updated.
In this version of compressibleInterFoam separate stress models (laminar,
non-Newtonian, LES or RAS) are instantiated for each of the two phases allowing
for completely different modeling for the phases.
e.g. in the climbingRod tutorial case provided a Newtonian laminar model is
instantiated for the air and a Maxwell non-Newtonian model is instantiated for
the viscoelastic liquid. To stabilize the Maxwell model in regions where the
liquid phase-fraction is 0 the new symmTensorPhaseLimitStabilization fvOption is
applied.
Other phase stress modeling combinations are also possible, e.g. the air may be
turbulent but the liquid laminar and an RAS or LES model applied to the air
only. However, to stabilize this combination a suitable fvOption would need to
be applied to the turbulence properties where the air phase-fraction is 0.
Henry G. Weller, Chris Greenshields
CFD Direct Ltd.
Two boundary conditions for the modelling of semi-permeable baffles have
been added. These baffles are permeable to a number of species within
the flow, and are impermeable to others. The flux of a given species is
calculated as a constant multipled by the drop in mass fraction across
the baffle.
The species mass-fraction condition requires the transfer constant and
the name of the patch on the other side of the baffle:
boundaryField
{
// ...
membraneA
{
type semiPermeableBaffleMassFraction;
samplePatch membranePipe;
c 0.1;
value uniform 0;
}
membraneB
{
type semiPermeableBaffleMassFraction;
samplePatch membraneSleeve;
c 0.1;
value uniform 1;
}
}
If the value of c is omitted, or set to zero, then the patch is
considered impermeable to the species in question. The samplePatch entry
can also be omitted in this case.
The velocity condition does not require any special input:
boundaryField
{
// ...
membraneA
{
type semiPermeableBaffleVelocity;
value uniform (0 0 0);
}
membraneB
{
type semiPermeableBaffleVelocity;
value uniform (0 0 0);
}
}
These two boundary conditions must be used in conjunction, and the
mass-fraction condition must be applied to all species in the
simulation. The calculation will fail with an error message if either is
used in isolation.
A tutorial, combustion/reactingFoam/RAS/membrane, has been added which
demonstrates this transfer process.
This work was done with support from Stefan Lipp, at BASF.
XiEngineFoam is a premixed/partially-premixed combustion engine solver which
exclusively uses the Xi flamelet combustion model.
engineFoam is a general engine solver for inhomogeneous combustion with or
without spray supporting run-time selection of the chemistry-based combustion
model.
Standard crank-connecting rod and the new free-piston kinematics motion options
are provides, others can easily be added.
Contributed by Francesco Contino and Nicolas Bourgeois, BURN Research Group.
- Arrhenius viscocity model for incompressible viscocity.
- energyTransport FO for incompressible single and multiple phase
flows and viscousDissipation fvOption source.
- Tutorial to show the use of energyTransport:
multiphase/multiphaseInterFoam/laminar/mixerVessel2D
- Tutorial to show viscousDissipation:
compressible/rhoPimpleFoam/RAS/TJunction
Community contribution from Johan Roenby, DHI
IsoAdvector is a geometric Volume-of-Fluid method for advection of a
sharp interface between two incompressible fluids. It works on both
structured and unstructured meshes with no requirements on cell shapes.
IsoAdvector is as an alternative choice for the interface compression
treatment with the MULES limiter implemented in the interFoam family
of solvers.
The isoAdvector concept and code was developed at DHI and was funded
by a Sapere Aude postdoc grant to Johan Roenby from The Danish Council
for Independent Research | Technology and Production Sciences (Grant-ID:
DFF - 1337-00118B - FTP).
Co-funding is also provided by the GTS grant to DHI from the Danish
Agency for Science, Technology and Innovation.
The ideas behind and performance of the isoAdvector scheme is
documented in:
Roenby J, Bredmose H, Jasak H. 2016 A computational method for sharp
interface advection. R. Soc. open sci. 3: 160405.
[http://dx.doi.org/10.1098/rsos.160405](http://dx.doi.org/10.1098/rsos.160405)
Videos showing isoAdvector's performance with a number of standard
test cases can be found in this youtube channel:
https://www.youtube.com/channel/UCt6Idpv4C8TTgz1iUX0prAA
Project contributors:
* Johan Roenby <jro@dhigroup.com> (Inventor and main developer)
* Hrvoje Jasak <hrvoje.jasak@fsb.hr> (Consistent treatment of
boundary faces including processor boundaries, parallelisation,
code clean up
* Henrik Bredmose <hbre@dtu.dk> (Assisted in the conceptual
development)
* Vuko Vukcevic <vuko.vukcevic@fsb.hr> (Code review, profiling,
porting to foam-extend, bug fixing, testing)
* Tomislav Maric <tomislav@sourceflux.de> (Source file
rearrangement)
* Andy Heather <a.heather@opencfd.co.uk> (Integration into OpenFOAM
for v1706 release)
See the integration repository below to see the full set of changes
implemented for release into OpenFOAM v1706
https://develop.openfoam.com/Community/Integration-isoAdvector
Adding special alphaCourantNo for overlaping
Adding bounded term to UEq.H for overInterDyMFoam
Changing to NO_WRITE for the cellMask field
Changing twoSimpleRotors tutorial to open domain