- can now safely use labelList::null() instead of emptyLabelList for
return values. No special treatment required for lists.
Possible replacements:
if (notNull(list) && list.size()) -> if (list.size())
if (isNull(list) || list.empty()) -> if (list.empty())
The receiver may still wish to handle differently to distinguish
between a null list and an empty list, but no additional special
protection is required when obtaining sizes, traversing, outputting
etc.
- fixed some more places with an explicit AUTO_WRITE.
BUG: revert handling of the readOption. It should not be NO_READ.
In cases where the user a IOobject without specifying read/write, it
defaults to NO_READ anyhow. However, the move constructor can also
be called with empty lists and a read option. This has the same
signature, but obviously will not work with NO_READ.
- makes the intent clearer and avoids the need for additional
constructor casting. Eg,
labelList(10, Zero) vs. labelList(10, 0)
scalarField(10, Zero) vs. scalarField(10, scalar(0))
vectorField(10, Zero) vs. vectorField(10, vector::zero)
- now applicable to labelLists.
Note:
in some situations it will be more efficient to use
Foam::identity() directly. Eg,
globalIndex globalCells(mesh.nCells());
...
labelList cellIds
(
identity(globalCells.localSize(), globalCells.localStart())
);
- more dictionary-like methods, enforce keyType::LITERAL for all
lookups to avoid any spurious keyword matching.
- new readEntry, readIfPresent methods
- The get() method replaces the now deprecate lookup() method.
- Deprecate lookupOrFailsafe()
Failsafe behaviour is now an optional parameter for lookupOrDefault,
which makes it easier to tailor behaviour at runtime.
- output of the names is now always flatted without line-breaks.
Thus,
os << flatOutput(someEnumNames.names()) << nl;
os << someEnumNames << nl;
both generate the same output.
- Constructor now uses C-string (const char*) directly instead of
Foam::word in its initializer_list.
- Remove special enum + initializer_list constructor form since
it can create unbounded lookup indices.
- Removd old hasEnum, hasName forms that were provided during initial
transition from NamedEnum.
- Added static_assert on Enum contents to restrict to enum or
integral values. Should not likely be using this class to enumerate
other things since it internally uses an 'int' for its values.
Changed volumeType accordingly to enumerate on its type (enum),
not the class itself.
- nBoundaryFaces() is often used and is identical to
(nFaces() - nInternalFaces()).
- forward the mesh nInternalFaces() and nBoundaryFaces() to
polyBoundaryMesh as nFaces() and start() respectively,
for use when operating on a polyBoundaryMesh.
STYLE:
- use identity() function with starting offset when creating boundary maps.
labelList map
(
identity(mesh.nBoundaryFaces(), mesh.nInternalFaces())
);
vs.
labelList map(mesh.nBoundaryFaces());
forAll(map, i)
{
map[i] = mesh.nInternalFaces() + i;
}
- The iterator for a HashSet dereferences directly to its key.
- Eg,
for (const label patchi : patchSet)
{
...
}
vs.
forAllConstIter(labelHashSet, patchSet, iter)
{
const label patchi = iter.key();
...
}
This class is largely a pre-C++11 holdover. It is now possible to
simply use move construct/assignment directly.
In a few rare cases (eg, polyMesh::resetPrimitives) it has been
replaced by an autoPtr.
Adds overset discretisation to selected physics:
- diffusion : overLaplacianDyMFoam
- incompressible steady : overSimpleFoam
- incompressible transient : overPimpleDyMFoam
- compressible transient: overRhoPimpleDyMFoam
- two-phase VOF: overInterDyMFoam
The overset method chosen is a parallel, fully implicit implementation
whereby the interpolation (from donor to acceptor) is inserted as an
adapted discretisation on the donor cells, such that the resulting matrix
can be solved using the standard linear solvers.
Above solvers come with a set of tutorials, showing how to create and set-up
simple simulations from scratch.
- Constructor for bounding box of a single point.
- add(boundBox), add(point) ...
-> Extend box to enclose the second box or point(s).
Eg,
bb.add(pt);
vs.
bb.min() = Foam::min(bb.min(), pt);
bb.max() = Foam::max(bb.max(), pt);
Also works with other bounding boxes.
Eg,
bb.add(bb2);
// OR
bb += bb2;
vs.
bb.min() = Foam::min(bb.min(), bb2.min());
bb.max() = Foam::max(bb.max(), bb2.max());
'+=' operator allows the reduction to be used in parallel
gather/scatter operations.
A global '+' operator is not currently needed.
Note: may be useful in the future to have a 'clear()' method
that resets to a zero-sized (inverted) box.
STYLE: make many bounding box constructors explicit
- patchFields now get mapped (instead of created)
- with -consistent it now maps all patches except for processor ones (they are
the only ones that are processor-local)
- all constraint patches get evaluated after mapping to bring them up to date.
Patch contributed by Mattijs Janssens
- Avoids the need for the 'OutputFilterFunctionObject' wrapper
- Time-control for execution and writing is now provided by the
'timeControlFunctionObject' which instantiates the processing
'functionObject' and controls its operation.
- Alternative time-control functionObjects can now be written and
selected at run-time without the need to compile wrapped version of
EVERY existing functionObject which would have been required in the
old structure.
- The separation of 'execute' and 'write' functions is now formalized in the
'functionObject' base-class and all derived classes implement the
two functions.
- Unnecessary implementations of functions with appropriate defaults
in the 'functionObject' base-class have been removed reducing
clutter and simplifying implementation of new functionObjects.
- The 'coded' 'functionObject' has also been updated, simplified and tested.
- Further simplification is now possible by creating some general
intermediate classes derived from 'functionObject'.
These new names are more consistent and logical because:
primitiveField():
primitiveFieldRef():
Provides low-level access to the Field<Type> (primitive field)
without dimension or mesh-consistency checking. This should only be
used in the low-level functions where dimensional consistency is
ensured by careful programming and computational efficiency is
paramount.
internalField():
internalFieldRef():
Provides access to the DimensionedField<Type, GeoMesh> of values on
the internal mesh-type for which the GeometricField is defined and
supports dimension and checking and mesh-consistency checking.
In order to simplify expressions involving dimensioned internal field it
is preferable to use a simpler access convention. Given that
GeometricField is derived from DimensionedField it is simply a matter of
de-referencing this underlying type unlike the boundary field which is
peripheral information. For consistency with the new convention in
"tmp" "dimensionedInteralFieldRef()" has been renamed "ref()".
Non-const access to the internal field now obtained from a specifically
named access function consistent with the new names for non-canst access
to the boundary field boundaryFieldRef() and dimensioned internal field
dimensionedInternalFieldRef().
See also commit 22f4ad32b1
When the GeometricBoundaryField template class was originally written it
was a separate class in the Foam namespace rather than a sub-class of
GeometricField as it is now. Without loss of clarity and simplifying
code which access the boundary field of GeometricFields it is better
that GeometricBoundaryField be renamed Boundary for consistency with the
new naming convention for the type of the dimensioned internal field:
Internal, see commit 4a57b9be2e
This is a very simple text substitution change which can be applied to
any code which compiles with the OpenFOAM-dev libraries.