Calculates and outputs a field whose values are offset to a reference
value obtained by sampling the field at a user-specified location.
The field values are calculated using:
\f[
f_c = s(f_{c,t} - f_p + f_{off})
\f]
where
\vartable
f_c | field values at cell
s | optional scale factor (default = 1)
f_{c,t} | current field values at cell at this time
f_p | field value at position
f_{off} | offset field value (default = 0)
\endvartable
Usage
Example of function object specification to calculate the reference
field:
\verbatim
pRef
{
type reference;
libs ("libfieldFunctionObjects.so");
...
field p;
result pRef;
position (0 0 0);
scale 1.2;
offset 100000;
}
\endverbatim
Calculates the acoustic pressure based on Curle's analogy.
Curle's analogy is implemented as:
\f[
p' = 4 \frac{\pi}{c_0}\frac{\vec d}{|\vec d|^2}\frac{d(F)}{d(t)}
\f]
where
p' | Curle's acoustic pressure [Pa] or [Pa (m3/rho)]
c_0 | Reference speed of sound [m/s]
\vec d | Distance vector to observer locations [m]
F | Force [N] or [N (m3/rho)]
Community contribution from Johan Roenby, DHI
IsoAdvector is a geometric Volume-of-Fluid method for advection of a
sharp interface between two incompressible fluids. It works on both
structured and unstructured meshes with no requirements on cell shapes.
IsoAdvector is as an alternative choice for the interface compression
treatment with the MULES limiter implemented in the interFoam family
of solvers.
The isoAdvector concept and code was developed at DHI and was funded
by a Sapere Aude postdoc grant to Johan Roenby from The Danish Council
for Independent Research | Technology and Production Sciences (Grant-ID:
DFF - 1337-00118B - FTP).
Co-funding is also provided by the GTS grant to DHI from the Danish
Agency for Science, Technology and Innovation.
The ideas behind and performance of the isoAdvector scheme is
documented in:
Roenby J, Bredmose H, Jasak H. 2016 A computational method for sharp
interface advection. R. Soc. open sci. 3: 160405.
[http://dx.doi.org/10.1098/rsos.160405](http://dx.doi.org/10.1098/rsos.160405)
Videos showing isoAdvector's performance with a number of standard
test cases can be found in this youtube channel:
https://www.youtube.com/channel/UCt6Idpv4C8TTgz1iUX0prAA
Project contributors:
* Johan Roenby <jro@dhigroup.com> (Inventor and main developer)
* Hrvoje Jasak <hrvoje.jasak@fsb.hr> (Consistent treatment of
boundary faces including processor boundaries, parallelisation,
code clean up
* Henrik Bredmose <hbre@dtu.dk> (Assisted in the conceptual
development)
* Vuko Vukcevic <vuko.vukcevic@fsb.hr> (Code review, profiling,
porting to foam-extend, bug fixing, testing)
* Tomislav Maric <tomislav@sourceflux.de> (Source file
rearrangement)
* Andy Heather <a.heather@opencfd.co.uk> (Integration into OpenFOAM
for v1706 release)
See the integration repository below to see the full set of changes
implemented for release into OpenFOAM v1706
https://develop.openfoam.com/Community/Integration-isoAdvector
Generates discrete particle data from multiphase calculations by
interrogating the phase fraction field at a faceZone.
Data is written in raw form, i.e. per particle collected, with
as an optional binned distribution
The operation can be applied to any volume or surface fields generating a
volume or surface scalar field.
Example of function object specification:
\verbatim
Ttot
{
type add;
libs ("libfieldFunctionObjects.so");
fields (T Tdelta);
result Ttot;
executeControl writeTime;
writeControl writeTime;
}
\endverbatim
Also refactored functionObjects::fieldsExpression to avoid code
duplication between the 'add' and 'subtract' functionObjects.
The operation can be applied to any volume or surface fields generating a
volume or surface scalar field.
Example of function object specification:
\verbatim
Tdiff
{
type subtract;
libs ("libfieldFunctionObjects.so");
fields (T Tmean);
result Tdiff;
executeControl writeTime;
writeControl writeTime;
}
\endverbatim
The use of the term 'source' in the context of post-processing is
confusing and does not properly describe the process of region
selection. The new names 'surfaceRegion' and 'volRegion' better
describe the purpose of the functionObjects which is to provide field
processing functionality limited to a specified region of space, either
a surface or volume.
The keyword 'source' is renamed 'regionType' which better describes the
purpose which is to specify the method by which the surface or volume
region is selected.
The keyword to select the name of the surface or volume region is
renamed from 'sourceName' to 'name' consistent with the other
name-changes above.
with the more general and flexible 'postProcess' utility and '-postProcess' solver option
Rationale
---------
Both the 'postProcess' utility and '-postProcess' solver option use the
same extensive set of functionObjects available for data-processing
during the run avoiding the substantial code duplication necessary for
the 'foamCalc' and 'postCalc' utilities and simplifying maintenance.
Additionally consistency is guaranteed between solver data processing
and post-processing.
The functionObjects have been substantially re-written and generalized
to simplify development and encourage contribution.
Configuration
-------------
An extensive set of simple functionObject configuration files are
provided in
OpenFOAM-dev/etc/caseDicts/postProcessing
and more will be added in the future. These can either be copied into
'<case>/system' directory and included into the 'controlDict.functions'
sub-dictionary or included directly from 'etc/caseDicts/postProcessing'
using the '#includeEtc' directive or the new and more convenient
'#includeFunc' directive which searches the
'<etc>/caseDicts/postProcessing' directories for the selected
functionObject, e.g.
functions
{
#includeFunc Q
#includeFunc Lambda2
}
'#includeFunc' first searches the '<case>/system' directory in case
there is a local configuration.
Description of #includeFunc
---------------------------
Specify a functionObject dictionary file to include, expects the
functionObject name to follow (without quotes).
Search for functionObject dictionary file in
user/group/shipped directories.
The search scheme allows for version-specific and
version-independent files using the following hierarchy:
- \b user settings:
- ~/.OpenFOAM/\<VERSION\>/caseDicts/postProcessing
- ~/.OpenFOAM/caseDicts/postProcessing
- \b group (site) settings (when $WM_PROJECT_SITE is set):
- $WM_PROJECT_SITE/\<VERSION\>/caseDicts/postProcessing
- $WM_PROJECT_SITE/caseDicts/postProcessing
- \b group (site) settings (when $WM_PROJECT_SITE is not set):
- $WM_PROJECT_INST_DIR/site/\<VERSION\>/caseDicts/postProcessing
- $WM_PROJECT_INST_DIR/site/caseDicts/postProcessing
- \b other (shipped) settings:
- $WM_PROJECT_DIR/etc/caseDicts/postProcessing
An example of the \c \#includeFunc directive:
\verbatim
#includeFunc <funcName>
\endverbatim
postProcess
-----------
The 'postProcess' utility and '-postProcess' solver option provide the
same set of controls to execute functionObjects after the run either by
reading a specified set of fields to process in the case of
'postProcess' or by reading all fields and models required to start the
run in the case of '-postProcess' for each selected time:
postProcess -help
Usage: postProcess [OPTIONS]
options:
-case <dir> specify alternate case directory, default is the cwd
-constant include the 'constant/' dir in the times list
-dict <file> read control dictionary from specified location
-field <name> specify the name of the field to be processed, e.g. U
-fields <list> specify a list of fields to be processed, e.g. '(U T p)' -
regular expressions not currently supported
-func <name> specify the name of the functionObject to execute, e.g. Q
-funcs <list> specify the names of the functionObjects to execute, e.g.
'(Q div(U))'
-latestTime select the latest time
-newTimes select the new times
-noFunctionObjects
do not execute functionObjects
-noZero exclude the '0/' dir from the times list, has precedence
over the -withZero option
-parallel run in parallel
-region <name> specify alternative mesh region
-roots <(dir1 .. dirN)>
slave root directories for distributed running
-time <ranges> comma-separated time ranges - eg, ':10,20,40:70,1000:'
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage
pimpleFoam -postProcess -help
Usage: pimpleFoam [OPTIONS]
options:
-case <dir> specify alternate case directory, default is the cwd
-constant include the 'constant/' dir in the times list
-dict <file> read control dictionary from specified location
-field <name> specify the name of the field to be processed, e.g. U
-fields <list> specify a list of fields to be processed, e.g. '(U T p)' -
regular expressions not currently supported
-func <name> specify the name of the functionObject to execute, e.g. Q
-funcs <list> specify the names of the functionObjects to execute, e.g.
'(Q div(U))'
-latestTime select the latest time
-newTimes select the new times
-noFunctionObjects
do not execute functionObjects
-noZero exclude the '0/' dir from the times list, has precedence
over the -withZero option
-parallel run in parallel
-postProcess Execute functionObjects only
-region <name> specify alternative mesh region
-roots <(dir1 .. dirN)>
slave root directories for distributed running
-time <ranges> comma-separated time ranges - eg, ':10,20,40:70,1000:'
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage
The functionObjects to execute may be specified on the command-line
using the '-func' option for a single functionObject or '-funcs' for a
list, e.g.
postProcess -func Q
postProcess -funcs '(div(U) div(phi))'
In the case of 'Q' the default field to process is 'U' which is
specified in and read from the configuration file but this may be
overridden thus:
postProcess -func 'Q(Ua)'
as is done in the example above to calculate the two forms of the divergence of
the velocity field. Additional fields which the functionObjects may depend on
can be specified using the '-field' or '-fields' options.
The 'postProcess' utility can only be used to execute functionObjects which
process fields present in the time directories. However, functionObjects which
depend on fields obtained from models, e.g. properties derived from turbulence
models can be executed using the '-postProcess' of the appropriate solver, e.g.
pisoFoam -postProcess -func PecletNo
or
sonicFoam -postProcess -func MachNo
In this case all required fields will have already been read so the '-field' or
'-fields' options are not be needed.
Henry G. Weller
CFD Direct Ltd.