- helps avoid the creation of small face cuts (near corners, edges)
that result in zero-size faces on output.
CONFIG: make default iso-surface topo regularisation less aggressive
- The full (diagcell) regularisation no longer includes cleaning of
non-manifold surfaces by removing open edges.
This can be selected by the 'clean' regularisation option instead.
ie, 'clean' = 'full' + erode open edges
ENH: additional debug modes for iso-surface topo
- with (debug & 8) dumps out a VTK file of the tets to be cut and the
calculated open edges.
- combines region-based and proximity-based filtering
proxityRegions (post-filter):
Checks the distance of the resulting faces against the original
search surface. Filters based on the area-weighted distance
of each topologically connected region.
If the area-weighted distance of a region is greater than
\c absProximity, the entire region is rejected.
STYLE: 'proxityFaces' as newer synonym for 'proximity' filter
- additional rcEdge(), rcEdges() methods for reverse order walk
- accept generic edge() method as alternative to faceEdge() for
single edge retrieval.
- edge() method with points -> returns the vector
- reduce the number of operations in edgeDirection methods
DEFEATURE: remove longestEdge global function
- deprecated and replaced by face::longestEdge() method (2017-04)
- additional dummy template parameter to assist with supporting
derived classes. Currently just used for string types, but can be
extended.
- provide hash specialization for various integer types.
Removes the need for any forwarding.
- change default hasher for HashSet/HashTable from 'string::hash'
to `Hash<Key>`. This avoids questionable hashing calls and/or
avoids compiler resolution problems.
For example,
HashSet<label>::hasher and labelHashSet::hasher now both properly
map to Hash<label> whereas previously HashSet<label> would have
persistently mapped to string::hash, which was incorrect.
- standardize internal hashing functors.
Functor name is 'hasher', as per STL set/map and the OpenFOAM
HashSet/HashTable definitions.
Older code had a local templated name, which added unnecessary
clutter and the template parameter was always defaulted.
For example,
Old: `FixedList<label, 3>::Hash<>()`
New: `FixedList<label, 3>::hasher()`
Unchanged: `labelHashSet::hasher()`
Existing `Hash<>` functor namings are still supported,
but deprecated.
- define hasher and Hash specialization for bitSet and PackedList
- add symmetric hasher for 'face'.
Starts with lowest vertex value and walks in the direction
of the next lowest value. This ensures that the hash code is
independent of face orientation and face rotation.
NB:
- some of keys for multiphase handling (eg, phasePairKey)
still use yet another function naming: `hash` and `symmHash`.
This will be targeted for alignment in the future.
- wrap command-line retrieval of fileName with an implicit validate.
Instead of this:
fileName input(args[1]);
fileName other(args["someopt"]);
Now use this:
auto input = args.get<fileName>(1);
auto other = args.get<fileName>("someopt");
which adds a fileName::validate on the inputs
Because of how it is implemented, it will automatically also apply
to argList getOrDefault<fileName>, readIfPresent<fileName> etc.
- adjust fileName::validate and clean to handle backslash conversion.
This makes it easier to ensure that path names arising from MS-Windows
are consistently handled internally.
- dictionarySearch: now check for initial '/' directly instead of
relying on fileName isAbsolute(), which now does more things
BREAKING: remove fileName::clean() const method
- relying on const/non-const to control the behaviour (inplace change
or return a copy) is too fragile and the const version was
almost never used.
Replace:
fileName sanitized = constPath.clean();
With:
fileName sanitized(constPath);
sanitized.clean());
STYLE: test empty() instead of comparing with fileName::null
- improves interface and data consistency.
Older signatures are still active (via the Foam_IOstream_extras
define).
- refine internals for IOstreamOption streamFormat, versionNumber
ENH: improve data alignment for IOstream and IOobject
- fit sizeof label/scalar into unsigned char
STYLE: remove dead code
- eliminates a potentially invalid code branch.
Since it essentially had the same internals as std::swap anyhow,
make that more evident.
ENH: use std::swap for basic types
- makes it clearer that they do not rely on any special semantics
- ensure surface writing is time-step and nFields aware.
This avoids overwriting (ignoring) previous output fields.
- allow sampled surfaces to be used for weight fields as well.
Not sure why this restriction was still there.
- remove old compatibility reading of orientedFields.
Last used in v1612, now removed.
- only use face sampling. For surfaceFieldValue we can only do
something meaningful with face values.
ENH: modify interface methods for surfaceWriter
- replace direct modification of values with setter methods.
Eg,
old: writer.isPointData() = true;
new: writer.isPointData(true);
This makes it possible to add internal hooks to catch state changes.
ENH: allow post-construction change to sampledSurface interpolation
- rename interpolate() method to isPointData() for consistency with
other classes and to indicate that it is a query.
- additional isPointData(bool) setter method to change the expected
representation type after construction
- remove 'interpolate' restriction on isoSurfacePoint which was
previously flagged as an error but within sampledSurfaces can use
sampleScheme cellPoint and obtain representative samples.
Relax this restriction since this particular iso-surface algorithm
is slated for removal in the foreseeable future.
- adds topology-based segmentation of the surfaces generated with
distance surfaces. This can occur when the surface terminates
close to a thin wall gap in the mesh; resulting in a cuts that
extend into the next region.
The cutting algorithm does not normally distinguish between these
types of "ragged" cuts, and legitimate ones (eg, cutting multiple
pipes). The additional segmentation controls provide for two common
scenarios:
largestRegion (pre-filter):
- The cut cells are checked for topological connectivity and the
region with the most number of cut cells is retained.
This handles the "ragged" edge problem.
nearestPoints (pre-filter):
- The cut cells split into regions, the regions closest to the
user-defined points are retained.
Uses maxDistance for additional control.
proximity (post-filter):
- Checks the resulting faces against the original search surface
and rejects faces with a distance greater than absProximity.
ENH: restructure distance surface geometric filtering
- prefilter cells, which can be used to adjust the distance
calculation in the far field to the real distance
(not the normal distance).
This can also be used to artificially sharpen the transition
between near/far regions, if required in the future.
- generic isoSurfaceBase. Provides simpler cell-cut detection and
various functions that can be used for iso-surfaces or when
preparing prefiltered input for iso-surfaces.
- rudimentary runtime selection
ENH: isoSurface Cell/Topo uses the isoSurfaceBase infrastructure
- simpler cell cut detection, common routines
- ensure that tetMatcher is only called once per cell
ENH: use indirect patch during edge erosion
- lower overhead, allows backtracking (future) if needed
- was previously via inheritance, but using member data instead
supports a more flexible internal switching of the storage. It also
ensures that data access remains safe, even in the absence of
an isoSurface.
- better alignment of sampling Cell/Point/Topo inputs
- make exposedPatchName optional for isoSurface, cuttingPlane. This
was a holdover requirement from an older version of fvMeshSubset
- yields cleaner surfaces with few cuts.
Can use isoMethod keyword to select cell/point/topo if they prove
better for any particular case.
CONFIG: change default cuttingPlane algorithm from 'cell' to 'topo'
- bundles selection and control parameters used when creating
iso-surfaces. This simplifies selection and specification
- drop old compatibility handling of "cell" as a bool
- harmonize filter/regularisation flags for iso-surface
- for dictionary input, accept "isoMethod" and "isoAlgorithm" as being
synonymous. Using "isoMethod" is less subject to typing errors.
- (tet, pyr, hex) can be identified from their number of faces
and vertices. For these common shapes can use static `test()`
method instead of the virtual isA() method.
This is much cheaper for calling on an individual basis since
it avoids the overhead of constructing an object.
ENH: tetCell edge/reverseEdge (already had tetEdge)
- when sampling onto a meshed surface, the sampling surface may be
outside of the mesh region, or simply too far away to be considered
reasonable.
Can now specify a max search distance and default values for samples
that are too distant.
If a default value is not specified, uses Type(Zero).
Eg,
maxDistance 0.005;
defaultValue
{
"p.*" 1e5;
T 273.15;
U (-100 -100 -100);
}
- make handling of verbosity more consistent.
Make all setter return the old value, remove (unused) default
parameter as being counter-intuitive. This makes it easier to
restore the original values.
For example,
const bool oldVerbose = sampler.verbose(false);
...
sampler.verbose(oldVerbose);
- returns a range of `int` values that can be iterated across.
For example,
for (const int proci : Pstream::allProcs()) { ... }
instead of
for (label proci = 0; proci < Pstream::nProcs(); ++proci) { ... }
- for CAE formats such as abaqus, nastran, starcd, etc, the element id
is already part of the output format itself. For these cases, there
is no use in generating an additional "Ids" field.
ENH: add code to ignore negative face ids
- these will arise from very special cases, such as when a
solid element and side are encoded into a single integer.
BUG: starcd surface values output did not use original face ids
- with '&&' conditions, often better to check for non-null autoPtr
first (it is cheap)
- check as bool instead of valid() method for cleaner code, especially
when the wrapped item itself has a valid/empty or good.
Also when handling multiple checks.
Now
if (ptr && ptr->valid())
if (ptr1 || ptr2)
instead
if (ptr.valid() && ptr->valid())
if (ptr1.valid() || ptr2.valid())
- affects ensightSurfaceReader only.
If there are no `*` characters, protect against replacement.
Otherwise it would attempt to replace a zero-length string with
a single `0`, which results in prepending the name.
STYLE: ensightSurfaceReader constructor explicit