Note: performs its own tracking and does not rely on the base
particle::trackXXX functions, and uses a local particle position.
Look to update to barycentric tracking in the future.
The combined solver includes the most advanced and general functionality from
each solver including:
Continuous phase
Lagrangian multiphase parcels
Optional film
Continuous and Lagrangian phase reactions
Radiation
Strong buoyancy force support by solving for p_rgh
The reactingParcelFoam and reactingParcelFilmFoam tutorials have been combined
and updated.
- Arrhenius viscocity model for incompressible viscocity.
- energyTransport FO for incompressible single and multiple phase
flows and viscousDissipation fvOption source.
- Tutorial to show the use of energyTransport:
multiphase/multiphaseInterFoam/laminar/mixerVessel2D
- Tutorial to show viscousDissipation:
compressible/rhoPimpleFoam/RAS/TJunction
Community contribution from Johan Roenby, DHI
IsoAdvector is a geometric Volume-of-Fluid method for advection of a
sharp interface between two incompressible fluids. It works on both
structured and unstructured meshes with no requirements on cell shapes.
IsoAdvector is as an alternative choice for the interface compression
treatment with the MULES limiter implemented in the interFoam family
of solvers.
The isoAdvector concept and code was developed at DHI and was funded
by a Sapere Aude postdoc grant to Johan Roenby from The Danish Council
for Independent Research | Technology and Production Sciences (Grant-ID:
DFF - 1337-00118B - FTP).
Co-funding is also provided by the GTS grant to DHI from the Danish
Agency for Science, Technology and Innovation.
The ideas behind and performance of the isoAdvector scheme is
documented in:
Roenby J, Bredmose H, Jasak H. 2016 A computational method for sharp
interface advection. R. Soc. open sci. 3: 160405.
[http://dx.doi.org/10.1098/rsos.160405](http://dx.doi.org/10.1098/rsos.160405)
Videos showing isoAdvector's performance with a number of standard
test cases can be found in this youtube channel:
https://www.youtube.com/channel/UCt6Idpv4C8TTgz1iUX0prAA
Project contributors:
* Johan Roenby <jro@dhigroup.com> (Inventor and main developer)
* Hrvoje Jasak <hrvoje.jasak@fsb.hr> (Consistent treatment of
boundary faces including processor boundaries, parallelisation,
code clean up
* Henrik Bredmose <hbre@dtu.dk> (Assisted in the conceptual
development)
* Vuko Vukcevic <vuko.vukcevic@fsb.hr> (Code review, profiling,
porting to foam-extend, bug fixing, testing)
* Tomislav Maric <tomislav@sourceflux.de> (Source file
rearrangement)
* Andy Heather <a.heather@opencfd.co.uk> (Integration into OpenFOAM
for v1706 release)
See the integration repository below to see the full set of changes
implemented for release into OpenFOAM v1706
https://develop.openfoam.com/Community/Integration-isoAdvector
Adding special alphaCourantNo for overlaping
Adding bounded term to UEq.H for overInterDyMFoam
Changing to NO_WRITE for the cellMask field
Changing twoSimpleRotors tutorial to open domain
Adds overset discretisation to selected physics:
- diffusion : overLaplacianDyMFoam
- incompressible steady : overSimpleFoam
- incompressible transient : overPimpleDyMFoam
- compressible transient: overRhoPimpleDyMFoam
- two-phase VOF: overInterDyMFoam
The overset method chosen is a parallel, fully implicit implementation
whereby the interpolation (from donor to acceptor) is inserted as an
adapted discretisation on the donor cells, such that the resulting matrix
can be solved using the standard linear solvers.
Above solvers come with a set of tutorials, showing how to create and set-up
simple simulations from scratch.
- Use on/off vs longer compressed/uncompressed.
For consistency, replaced yes/no with on/off.
- Avoid the combination of binary/compressed,
which is disallowed and provokes a warning anyhow