Commit Graph

413 Commits

Author SHA1 Message Date
50516486a4 rhoPimpleFoam: Added support for transonic flow of liquids and real gases
Both stardard SIMPLE and the SIMPLEC (using the 'consistent' option in
fvSolution) are now supported for both subsonic and transonic flow of all
fluid types.

rhoPimpleFoam now instantiates the lower-level fluidThermo which instantiates
either a psiThermo or rhoThermo according to the 'type' specification in
thermophysicalProperties, see also commit a1c8cde310
2017-02-28 11:14:59 +00:00
7d6845defa rhoSimpleFoam: Added support for transonic flow of liquids and real gases
Both stardard SIMPLE and the SIMPLEC (using the 'consistent' option in
fvSolution) are now supported for both subsonic and transonic flow of all
fluid types.
2017-02-24 16:20:06 +00:00
2f41df18e3 Merge branch 'master' into develop 2017-03-21 13:36:26 +00:00
a1c8cde310 rhoSimpleFoam: added support for compressible liquid flows
rhoSimpleFoam now instantiates the lower-level fluidThermo which instantiates
either a psiThermo or rhoThermo according to the 'type' specification in
thermophysicalProperties, e.g.

thermoType
{
    type            hePsiThermo;
    mixture         pureMixture;
    transport       sutherland;
    thermo          janaf;
    equationOfState perfectGas;
    specie          specie;
    energy          sensibleInternalEnergy;
}

instantiates a psiThermo for a perfect gas with JANAF thermodynamics, whereas

thermoType
{
    type            heRhoThermo;
    mixture         pureMixture;
    properties      liquid;
    energy          sensibleInternalEnergy;
}

mixture
{
    H2O;
}

instantiates a rhoThermo for water, see new tutorial
compressible/rhoSimpleFoam/squareBendLiq.

In order to support complex equations of state the pressure can no longer be
unlimited and rhoSimpleFoam now limits the pressure rather than the density to
handle start-up more robustly.

For backward compatibility 'rhoMin' and 'rhoMax' can still be used in the SIMPLE
sub-dictionary of fvSolution which are converted into 'pMax' and 'pMin' but it
is better to set either 'pMax' and 'pMin' directly or use the more convenient
'pMinFactor' and 'pMinFactor' from which 'pMax' and 'pMin' are calculated using
the fixed boundary pressure or reference pressure e.g.

SIMPLE
{
    nNonOrthogonalCorrectors 0;

    pMinFactor      0.1;
    pMaxFactor      1.5;

    transonic       yes;
    consistent      yes;

    residualControl
    {
        p               1e-3;
        U               1e-4;
        e               1e-3;
        "(k|epsilon|omega)" 1e-3;
    }
}
2017-02-24 11:18:01 +00:00
d3911dd167 STYLE: avoid old-style shell backticks in various places 2017-02-20 09:30:58 +01:00
c52e4b58a1 thermophysicalModels: Changed specie thermodynamics from mole to mass basis
The fundamental properties provided by the specie class hierarchy were
mole-based, i.e. provide the properties per mole whereas the fundamental
properties provided by the liquidProperties and solidProperties classes are
mass-based, i.e. per unit mass.  This inconsistency made it impossible to
instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV
transport solvers on liquidProperties.  In order to combine VoF with film and/or
Lagrangian models it is essential that the physical propertied of the three
representations of the liquid are consistent which means that it is necessary to
instantiate the thermodynamics packages on liquidProperties.  This requires
either liquidProperties to be rewritten mole-based or the specie classes to be
rewritten mass-based.  Given that most of OpenFOAM solvers operate
mass-based (solve for mass-fractions and provide mass-fractions to sub-models it
is more consistent and efficient if the low-level thermodynamics is also
mass-based.

This commit includes all of the changes necessary for all of the thermodynamics
in OpenFOAM to operate mass-based and supports the instantiation of
thermodynamics packages on liquidProperties.

Note that most users, developers and contributors to OpenFOAM will not notice
any difference in the operation of the code except that the confusing

    nMoles     1;

entries in the thermophysicalProperties files are no longer needed or used and
have been removed in this commet.  The only substantial change to the internals
is that species thermodynamics are now "mixed" with mass rather than mole
fractions.  This is more convenient except for defining reaction equilibrium
thermodynamics for which the molar rather than mass composition is usually know.
The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and
equilibriumFlameT utilities in which the species thermodynamics are
pre-multiplied by their molecular mass to effectively convert them to mole-basis
to simplify the definition of the reaction equilibrium thermodynamics, e.g. in
equilibriumCO

    // Reactants (mole-based)
    thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W();

    // Oxidant (mole-based)
    thermo O2(thermoData.subDict("O2")); O2 *= O2.W();
    thermo N2(thermoData.subDict("N2")); N2 *= N2.W();

    // Intermediates (mole-based)
    thermo H2(thermoData.subDict("H2")); H2 *= H2.W();

    // Products (mole-based)
    thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W();
    thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W();
    thermo CO(thermoData.subDict("CO")); CO *= CO.W();

    // Product dissociation reactions

    thermo CO2BreakUp
    (
        CO2 == CO + 0.5*O2
    );

    thermo H2OBreakUp
    (
        H2O == H2 + 0.5*O2
    );

Please report any problems with this substantial but necessary rewrite of the
thermodynamic at https://bugs.openfoam.org

Henry G. Weller
CFD Direct Ltd.
2017-02-17 11:22:14 +00:00
c3df4b9368 BUG: Tutorial updates - updated rhoSimpleFoam thermo to use rhoThermo after commit a7c8d1c - see #355 2016-12-22 10:14:34 +00:00
28e37bbec9 STYLE: Consistency updates 2016-12-16 14:36:48 +00:00
67ea233d21 ENH: Usage of locationsInMesh for tutorial and other fix 2016-12-14 11:04:15 +00:00
7063555abb BUG: Tutorial update - fixes #339 2016-12-13 12:43:02 +00:00
83f3044db9 tutorials/compressible/rhoSimpleFoam/squareBend: Stabilize by further relaxing e
Patch contributed by Mattijs Janssens
http://bugs.openfoam.org/view.php?id=2382
2016-12-09 16:53:35 +00:00
1c687baa35 dynamicMotionSolverListFvMesh: New mesh-motion solver supporting multiple moving regions
e.g. the motion of two counter-rotating AMI regions could be defined:

dynamicFvMesh   dynamicMotionSolverListFvMesh;

solvers
(
    rotor1
    {
        solver solidBody;

        cellZone        rotor1;

        solidBodyMotionFunction  rotatingMotion;
        rotatingMotionCoeffs
        {
            origin        (0 0 0);
            axis          (0 0 1);
            omega         6.2832; // rad/s
        }
    }

    rotor2
    {
        solver solidBody;

        cellZone        rotor2;

        solidBodyMotionFunction  rotatingMotion;
        rotatingMotionCoeffs
        {
            origin        (0 0 0);
            axis          (0 0 1);
            omega         -6.2832; // rad/s
        }
    }
);

Any combination of motion solvers may be selected but there is no special
handling of motion interaction; the motions are applied sequentially and
potentially cumulatively.

To support this new general framework the solidBodyMotionFvMesh and
multiSolidBodyMotionFvMesh dynamicFvMeshes have been converted into the
corresponding motionSolvers solidBody and multiSolidBody and the tutorials
updated to reflect this change e.g. the motion in the mixerVesselAMI2D tutorial
is now defined thus:

dynamicFvMesh   dynamicMotionSolverFvMesh;

solver solidBody;

solidBodyCoeffs
{
    cellZone        rotor;

    solidBodyMotionFunction  rotatingMotion;
    rotatingMotionCoeffs
    {
        origin        (0 0 0);
        axis          (0 0 1);
        omega         6.2832; // rad/s
    }
}
2016-12-01 15:57:15 +00:00
6408cd1fbb ENH: outletMappedUniformInlet BC - Cp only calculated for patch and not entire domain; input keywords updated for consistency 2016-12-12 12:13:53 +00:00
c0f44ac4f3 MRG: Integrated foundation code 2016-12-12 12:10:29 +00:00
fc8f2ac94b ENH: Adding tutorial for outletMappedUniformInletHeatAddition 2016-12-05 14:40:11 -08:00
a6a90838fa STYLE: adjust tutorial Allrun scripts (issue #310)
- A few without a 'cd' at the start.
  Use $(getApplication) directly in more places (for clarity).
2016-11-21 10:18:00 +01:00
21679c04e4 STYLE: adjust tutorial Allclean scripts (issue #310)
- A few without a 'cd' at the start.
  Several remove files that are already covered by the cleanCase function.
2016-11-20 17:26:44 +01:00
91ed12d91c ENH: update nacaAirfoil tutorial to use prostar4 mesh
- Replaces prostar3 mesh format, which we no longer support.
- Update initial conditions to use regex and include file.
2016-10-07 19:11:50 +02:00
e98e372f8e ENH: Tutorial updates 2016-09-30 15:31:35 +01:00
bd0e982d99 MRG: Initial commit after latest Foundation merge 2016-09-30 11:16:28 +01:00
3dbd39146c STYLE: consistency updates 2016-09-27 15:17:55 +01:00
ad1e798293 ENH: Initial testing updates 2016-09-26 09:28:31 +01:00
1fbcb686ff STYLE: Consistency updates 2016-09-23 16:52:46 +01:00
1e94682f24 tutorials: Renamed sub-directories ras -> RAS and les -> LES 2016-09-20 19:03:40 +01:00
9fbd612672 GIT: Initial state after latest Foundation merge 2016-09-20 14:49:08 +01:00
0857f479a8 PBiCGStab: New preconditioned bi-conjugate gradient stabilized solver for asymmetric lduMatrices
using a run-time selectable preconditioner

References:
    Van der Vorst, H. A. (1992).
    Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
    for the solution of nonsymmetric linear systems.
    SIAM Journal on scientific and Statistical Computing, 13(2), 631-644.

    Barrett, R., Berry, M. W., Chan, T. F., Demmel, J., Donato, J.,
    Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. & Van der Vorst, H.
    (1994).
    Templates for the solution of linear systems:
    building blocks for iterative methods
    (Vol. 43). Siam.

See also: https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method

Tests have shown that PBiCGStab with the DILU preconditioner is more
robust, reliable and shows faster convergence (~2x) than PBiCG with
DILU, in particular in parallel where PBiCG occasionally diverges.

This remarkable improvement over PBiCG prompted the update of all
tutorial cases currently using PBiCG to use PBiCGStab instead.  If any
issues arise with this update please report on Mantis: http://bugs.openfoam.org
2016-09-05 11:46:42 +01:00
2ab457015d tutorials: corrected scripts ']; then' -> ' ]; then'
Patch contributed by Bruno Santos
Resolves bug-report http://bugs.openfoam.org/view.php?id=2175
2016-08-02 19:15:40 +01:00
2e1557a79e tutorials Allrun scripts: Update running of postProcess application
Patch contributed by Bruno Santos
Resolves bug-report http://bugs.openfoam.org/view.php?id=2173
2016-08-02 16:24:28 +01:00
eb6cf446fc STYLE: wrong permissions on some tutorial files 2016-06-30 15:39:38 +02:00
da6820c300 ENH: Added Pawan's sineWaveDamping tutorial to test new acousticDamping fvOption 2016-06-30 12:48:50 +01:00
6d330d3d12 tutorials: Updated formatting of dictionaries and specification of 'plane' and 'samplePlane' 2016-06-29 18:02:57 +01:00
6e6ed0ca94 STYLE: cleanup rhoPorousSimpleFoam tutorial case
- better cleanup, avoid collisions between implicit and explicit cases
2016-06-29 14:21:02 +02:00
820f809bd5 STYLE: cleanup handling of 0.org directories (in parallel)
- remove duplicate 0/ files from the repository
2016-06-29 13:34:36 +02:00
1988e4bb60 STYLE: avoid backticks for getApplication 2016-06-27 17:50:55 +02:00
dd60cfcd06 FIX: provide restore0Dir function to fix issue #159
- makes it easier to ensure the correct behaviour, consistently
2016-06-27 16:33:55 +02:00
c9adfb9806 fvOptions/constraints/fixedValueConstraint: Replacement for the nonsensical ExplicitSetValue
Description
    Constrain the field values within a specified region.

    For example to set the turbulence properties within a porous region:
    \verbatim
    porosityTurbulence
    {
        type            scalarFixedValueConstraint;
        active          yes;

        scalarFixedValueConstraintCoeffs
        {
            selectionMode   cellZone;
            cellZone        porosity;
            fieldValues
            {
                k           30.7;
                epsilon     1.5;
            }
        }
    }
    \endverbatim

See tutorials/compressible/rhoSimpleFoam/angledDuctExplicitFixedCoeff
constant/fvOptions for an example of this fvOption in action.
2016-06-16 15:32:19 +01:00
64aa9925e4 totalPressureFvPatchScalarField, uniformTotalPressureFvPatchScalarField: simplified and rationalized
The modes of operation are set by the dimensions of the pressure field
    to which this boundary condition is applied, the \c psi entry and the value
    of \c gamma:
    \table
        Mode                    | dimensions | psi   | gamma
        incompressible subsonic | p/rho      |       |
        compressible subsonic   | p          | none  |
        compressible transonic  | p          | psi   | 1
        compressible supersonic | p          | psi   | > 1
    \endtable

    For most applications the totalPressure boundary condition now only
    requires p0 to be specified e.g.
    outlet
    {
        type            totalPressure;
        p0              uniform 1e5;
    }
2016-06-16 12:21:34 +01:00
344f435f54 Tutorials fvSolution files: removed solver entries which use default
values; formatted Switch entries consistently across all cases
2016-06-15 07:39:12 +01:00
4baac4cd80 sonicFoam cases: removed redundant coefficient in divSchemes 2016-06-13 15:03:57 +01:00
d9f423ec85 Utility sample: replaced by 'postProcess -func sample'
To re-use existing 'sampleDict' files simply add the following entries:

    type sets;
    libs ("libsampling.so");

and run

    postProcess -func sampleDict

It is probably better to also rename 'sampleDict' -> 'sample' and then run

    postProcess -func sampleDict
2016-06-13 14:27:46 +01:00
12814a306d sonicFoam forwardStep tutorial: removed redundant scheme entry 2016-06-13 09:34:01 +01:00
dd281330bc foamInfoExec: Time listing functionality superseded by foamListTimes 2016-06-03 19:23:27 +01:00
1be464d23d functionObjectList::readFunctionObject: Add support for functionObject arguments containing '()'s 2016-05-31 17:47:21 +01:00
7454518bc5 includeFuncEntry: Added support for function arguments compatible with the '-func' post-processing option
e.g.

functions
{
    #includeFunc mag(U)
}

executes 'mag' on the field 'U' writing the field 'mag(U)'.

The equivalent post-processing command is

postProcess -func 'mag(U)'
2016-05-31 14:43:44 +01:00
cb1523dbd9 tutorials/compressible/sonicFoam/laminar/shockTube: Added functionObject
tutorials/electromagnetics/mhdFoam/hartmann: Added functionObject

Replaced separate 'postProcess' step with a functionObject executed at
run-time.
2016-05-31 10:33:48 +01:00
d438da1eb7 ACMI: Corrected conservation issue
Patch contributed by Mattijs Janssens
Resolves bug-report http://bugs.openfoam.org/view.php?id=2057
2016-05-30 08:29:11 +01:00
e4dc50dcb0 postProcessing: Replaced 'foamCalc' and the 'postCalc' utilities
with the more general and flexible 'postProcess' utility and '-postProcess' solver option

Rationale
---------

Both the 'postProcess' utility and '-postProcess' solver option use the
same extensive set of functionObjects available for data-processing
during the run avoiding the substantial code duplication necessary for
the 'foamCalc' and 'postCalc' utilities and simplifying maintenance.
Additionally consistency is guaranteed between solver data processing
and post-processing.

The functionObjects have been substantially re-written and generalized
to simplify development and encourage contribution.

Configuration
-------------

An extensive set of simple functionObject configuration files are
provided in

OpenFOAM-dev/etc/caseDicts/postProcessing

and more will be added in the future.  These can either be copied into
'<case>/system' directory and included into the 'controlDict.functions'
sub-dictionary or included directly from 'etc/caseDicts/postProcessing'
using the '#includeEtc' directive or the new and more convenient
'#includeFunc' directive which searches the
'<etc>/caseDicts/postProcessing' directories for the selected
functionObject, e.g.

functions
{
    #includeFunc Q
    #includeFunc Lambda2
}

'#includeFunc' first searches the '<case>/system' directory in case
there is a local configuration.

Description of #includeFunc
---------------------------

    Specify a functionObject dictionary file to include, expects the
    functionObject name to follow (without quotes).

    Search for functionObject dictionary file in
    user/group/shipped directories.
    The search scheme allows for version-specific and
    version-independent files using the following hierarchy:
    - \b user settings:
      - ~/.OpenFOAM/\<VERSION\>/caseDicts/postProcessing
      - ~/.OpenFOAM/caseDicts/postProcessing
    - \b group (site) settings (when $WM_PROJECT_SITE is set):
      - $WM_PROJECT_SITE/\<VERSION\>/caseDicts/postProcessing
      - $WM_PROJECT_SITE/caseDicts/postProcessing
    - \b group (site) settings (when $WM_PROJECT_SITE is not set):
      - $WM_PROJECT_INST_DIR/site/\<VERSION\>/caseDicts/postProcessing
      - $WM_PROJECT_INST_DIR/site/caseDicts/postProcessing
    - \b other (shipped) settings:
      - $WM_PROJECT_DIR/etc/caseDicts/postProcessing

    An example of the \c \#includeFunc directive:
    \verbatim
        #includeFunc <funcName>
    \endverbatim

postProcess
-----------

The 'postProcess' utility and '-postProcess' solver option provide the
same set of controls to execute functionObjects after the run either by
reading a specified set of fields to process in the case of
'postProcess' or by reading all fields and models required to start the
run in the case of '-postProcess' for each selected time:

postProcess -help

Usage: postProcess [OPTIONS]
options:
  -case <dir>       specify alternate case directory, default is the cwd
  -constant         include the 'constant/' dir in the times list
  -dict <file>      read control dictionary from specified location
  -field <name>     specify the name of the field to be processed, e.g. U
  -fields <list>    specify a list of fields to be processed, e.g. '(U T p)' -
                    regular expressions not currently supported
  -func <name>      specify the name of the functionObject to execute, e.g. Q
  -funcs <list>     specify the names of the functionObjects to execute, e.g.
                    '(Q div(U))'
  -latestTime       select the latest time
  -newTimes         select the new times
  -noFunctionObjects
                    do not execute functionObjects
  -noZero           exclude the '0/' dir from the times list, has precedence
                    over the -withZero option
  -parallel         run in parallel
  -region <name>    specify alternative mesh region
  -roots <(dir1 .. dirN)>
                    slave root directories for distributed running
  -time <ranges>    comma-separated time ranges - eg, ':10,20,40:70,1000:'
  -srcDoc           display source code in browser
  -doc              display application documentation in browser
  -help             print the usage

 pimpleFoam -postProcess -help

Usage: pimpleFoam [OPTIONS]
options:
  -case <dir>       specify alternate case directory, default is the cwd
  -constant         include the 'constant/' dir in the times list
  -dict <file>      read control dictionary from specified location
  -field <name>     specify the name of the field to be processed, e.g. U
  -fields <list>    specify a list of fields to be processed, e.g. '(U T p)' -
                    regular expressions not currently supported
  -func <name>      specify the name of the functionObject to execute, e.g. Q
  -funcs <list>     specify the names of the functionObjects to execute, e.g.
                    '(Q div(U))'
  -latestTime       select the latest time
  -newTimes         select the new times
  -noFunctionObjects
                    do not execute functionObjects
  -noZero           exclude the '0/' dir from the times list, has precedence
                    over the -withZero option
  -parallel         run in parallel
  -postProcess      Execute functionObjects only
  -region <name>    specify alternative mesh region
  -roots <(dir1 .. dirN)>
                    slave root directories for distributed running
  -time <ranges>    comma-separated time ranges - eg, ':10,20,40:70,1000:'
  -srcDoc           display source code in browser
  -doc              display application documentation in browser
  -help             print the usage

The functionObjects to execute may be specified on the command-line
using the '-func' option for a single functionObject or '-funcs' for a
list, e.g.

postProcess -func Q
postProcess -funcs '(div(U) div(phi))'

In the case of 'Q' the default field to process is 'U' which is
specified in and read from the configuration file but this may be
overridden thus:

postProcess -func 'Q(Ua)'

as is done in the example above to calculate the two forms of the divergence of
the velocity field.  Additional fields which the functionObjects may depend on
can be specified using the '-field' or '-fields' options.

The 'postProcess' utility can only be used to execute functionObjects which
process fields present in the time directories.  However, functionObjects which
depend on fields obtained from models, e.g. properties derived from turbulence
models can be executed using the '-postProcess' of the appropriate solver, e.g.

pisoFoam -postProcess -func PecletNo

or

sonicFoam -postProcess -func MachNo

In this case all required fields will have already been read so the '-field' or
'-fields' options are not be needed.

Henry G. Weller
CFD Direct Ltd.
2016-05-28 18:58:48 +01:00
b634f5af08 functionObjects::MachNo: New functionObject to calculate the Mach number volScalarField
of a compressible single-phase flow

See tutorials/compressible/sonicFoam/laminar/forwardStep/system/controlDict
2016-05-23 21:45:41 +01:00
3eec5854be Standardized the selection of required and optional fields in BCs, fvOptions, functionObjects etc.
In most boundary conditions, fvOptions etc. required and optional fields
to be looked-up from the objectRegistry are selected by setting the
keyword corresponding to the standard field name in the BC etc. to the
appropriate name in the objectRegistry.  Usually a default is provided
with sets the field name to the keyword name, e.g. in the
totalPressureFvPatchScalarField the velocity is selected by setting the
keyword 'U' to the appropriate name which defaults to 'U':

        Property     | Description             | Required    | Default value
        U            | velocity field name     | no          | U
        phi          | flux field name         | no          | phi
        .
        .
        .

However, in some BCs and functionObjects and many fvOptions another
convention is used in which the field name keyword is appended by 'Name'
e.g.

        Property     | Description             | Required    | Default value
        pName        | pressure field name     | no          | p
        UName        | velocity field name     | no          | U

This difference in convention is unnecessary and confusing, hinders code
and dictionary reuse and complicates code maintenance.  In this commit
the appended 'Name' is removed from the field selection keywords
standardizing OpenFOAM on the first convention above.
2016-05-21 20:28:20 +01:00
83bae2efd3 functionObjects: Renamed dictionary entry 'functionObjectLibs' -> 'libs'
This changes simplifies the specification of functionObjects in
controlDict and is consistent with the 'libs' option in controlDict to
load special solver libraries.

Support for the old 'functionObjectLibs' name is supported for backward compatibility.
2016-05-16 22:09:01 +01:00