Commit Graph

19 Commits

Author SHA1 Message Date
722ebdb151 STYLE: update of 'mode' to 'type' keyword for radiation properties 2019-05-17 09:53:25 +01:00
154029ddd0 BOT: Cleaned up header files 2019-02-06 12:28:23 +00:00
1d85fecf4d ENH: use Zero when zero-initializing types
- makes the intent clearer and avoids the need for additional
  constructor casting. Eg,

      labelList(10, Zero)    vs.  labelList(10, 0)
      scalarField(10, Zero)  vs.  scalarField(10, scalar(0))
      vectorField(10, Zero)  vs.  vectorField(10, vector::zero)
2018-12-11 23:50:15 +01:00
a9f5f181c6 STYLE: remove extra '(' in usage information, doubled ';;' 2018-12-21 09:22:06 +01:00
d1bc53b77e ENH: Updated construction/retrieval of gravity field. See #1094 2018-11-14 21:49:32 +00:00
8fabc32539 ENH: simplify objectRegistry access names (issue #322)
New name:  findObject(), cfindObject()
  Old name:  lookupObjectPtr()

      Return a const pointer or nullptr on failure.

  New name:  findObject()
  Old name:  --

      Return a non-const pointer or nullptr on failure.

  New name:  getObjectPtr()
  Old name:  lookupObjectRefPtr()

      Return a non-const pointer or nullptr on failure.
      Can be called on a const object and it will perform a
      const_cast.

- use these updated names and functionality in more places

NB: The older methods names are deprecated, but continue to be defined.
2018-10-17 16:44:10 +02:00
8eddcc072a ENH: avoid readScalar, readLabel etc from dictionary (#762, #1033)
- use the dictionary 'get' methods instead of readScalar for
  additional checking

     Unchecked:  readScalar(dict.lookup("key"));
     Checked:    dict.get<scalar>("key");

- In templated classes that also inherit from a dictionary, an additional
  'template' keyword will be required. Eg,

     this->coeffsDict().template get<scalar>("key");

  For this common use case, the predefined getXXX shortcuts may be
  useful. Eg,

     this->coeffsDict().getScalar("key");
2018-10-12 08:14:47 +02:00
6697bb4735 ENH: improve, simplify, rationalize coordinate system handling (issue #863)
Previously the coordinate system functionality was split between
coordinateSystem and coordinateRotation. The coordinateRotation stored
the rotation tensor and handled all tensor transformations.

The functionality has now been revised and consolidated into the
coordinateSystem classes. The sole purpose of coordinateRotation
is now just to provide a selectable mechanism of how to define the
rotation tensor (eg, axis-angle, euler angles, local axes) for user
input, but after providing the appropriate rotation tensor it has
no further influence on the transformations.

--

The coordinateSystem class now contains an origin and a base rotation
tensor directly and various transformation methods.

  - The origin represents the "shift" for a local coordinate system.

  - The base rotation tensor represents the "tilt" or orientation
    of the local coordinate system in general (eg, for mapping
    positions), but may require position-dependent tensors when
    transforming vectors and tensors.

For some coordinate systems (currently the cylindrical coordinate system),
the rotation tensor required for rotating a vector or tensor is
position-dependent.

The new coordinateSystem and its derivates (cartesian, cylindrical,
indirect) now provide a uniform() method to define if the rotation
tensor is position dependent/independent.

The coordinateSystem transform and invTransform methods are now
available in two-parameter forms for obtaining position-dependent
rotation tensors. Eg,

      ... = cs.transform(globalPt, someVector);

In some cases it can be useful to use query uniform() to avoid
storage of redundant values.

      if (cs.uniform())
      {
          vector xx = cs.transform(someVector);
      }
      else
      {
          List<vector> xx = cs.transform(manyPoints, someVector);
      }

Support transform/invTransform for common data types:
   (scalar, vector, sphericalTensor, symmTensor, tensor).

====================
  Breaking Changes
====================

- These changes to coordinate systems and rotations may represent
  a breaking change for existing user coding.

- Relocating the rotation tensor into coordinateSystem itself means
  that the coordinate system 'R()' method now returns the rotation
  directly instead of the coordinateRotation. The method name 'R()'
  was chosen for consistency with other low-level entities (eg,
  quaternion).

  The following changes will be needed in coding:

      Old:  tensor rot = cs.R().R();
      New:  tensor rot = cs.R();

      Old:  cs.R().transform(...);
      New:  cs.transform(...);

  Accessing the runTime selectable coordinateRotation
  has moved to the rotation() method:

      Old:  Info<< "Rotation input: " << cs.R() << nl;
      New:  Info<< "Rotation input: " << cs.rotation() << nl;

- Naming consistency changes may also cause code to break.

      Old:  transformVector()
      New:  transformPrincipal()

  The old method name transformTensor() now simply becomes transform().

====================
  New methods
====================

For operations requiring caching of the coordinate rotations, the
'R()' method can be used with multiple input points:

       tensorField rots(cs.R(somePoints));

   and later

       Foam::transformList(rots, someVectors);

The rotation() method can also be used to change the rotation tensor
via a new coordinateRotation definition (issue #879).

The new methods transformPoint/invTransformPoint provide
transformations with an origin offset using Cartesian for both local
and global points. These can be used to determine the local position
based on the origin/rotation without interpreting it as a r-theta-z
value, for example.

================
  Input format
================

- Streamline dictionary input requirements

  * The default type is cartesian.
  * The default rotation type is the commonly used axes rotation
    specification (with e1/e2/3), which is assumed if the 'rotation'
    sub-dictionary does not exist.

    Example,

    Compact specification:

        coordinateSystem
        {
            origin  (0 0 0);
            e2      (0 1 0);
            e3      (0.5 0 0.866025);
        }

    Full specification (also accepts the longer 'coordinateRotation'
    sub-dictionary name):

        coordinateSystem
        {
            type    cartesian;
            origin  (0 0 0);

            rotation
            {
                type    axes;
                e2      (0 1 0);
                e3      (0.5 0 0.866025);
            }
        }

   This simplifies the input for many cases.

- Additional rotation specification 'none' (an identity rotation):

      coordinateSystem
      {
          origin  (0 0 0);
          rotation { type none; }
      }

- Additional rotation specification 'axisAngle', which is similar
  to the -rotate-angle option for transforming points (issue #660).
  For some cases this can be more intuitive.

  For example,

      rotation
      {
          type    axisAngle;
          axis    (0 1 0);
          angle   30;
      }
  vs.
      rotation
      {
          type    axes;
          e2      (0 1 0);
          e3      (0.5 0 0.866025);
      }

- shorter names (or older longer names) for the coordinate rotation
  specification.

     euler         EulerRotation
     starcd        STARCDRotation
     axes          axesRotation

================
  Coding Style
================
- use Foam::coordSystem namespace for categories of coordinate systems
  (cartesian, cylindrical, indirect). This reduces potential name
  clashes and makes a clearer declaration. Eg,

      coordSystem::cartesian csys_;

  The older names (eg, cartesianCS, etc) remain available via typedefs.

- added coordinateRotations namespace for better organization and
  reduce potential name clashes.
2018-10-01 13:54:10 +02:00
4d6f0498d6 ENH: use vector::normalise and VectorSpace::normalised for clarity 2018-08-10 15:18:29 +02:00
f00c7a655c COMP: rename dictionary::read<T> to dictionary::readEntry<T>
- avoids compiler ambiguity when virtual methods such as
  IOdictionary::read() exist.

- the method was introduced in 1806, and was thus not yet widely used
2018-07-30 15:52:40 +02:00
9f0a80a655 STYLE: avoid unrestricted dictionary lookup in randomProcesses, waveModels
- ref issue #762

STYLE: consistency in file vs files for pointNoise and surfaceNoise

- use "files" when available, fallback to "file" otherwise.
2018-07-23 18:13:43 +02:00
bc1f2fa97e STYLE: use auto and cfind to simplify selector usage (issue #512) 2017-07-03 10:36:03 +02:00
fd665b4a3c ENH: overset: Initial release of overset capability.
Adds overset discretisation to selected physics:
- diffusion : overLaplacianDyMFoam
- incompressible steady : overSimpleFoam
- incompressible transient : overPimpleDyMFoam
- compressible transient: overRhoPimpleDyMFoam
- two-phase VOF: overInterDyMFoam

The overset method chosen is a parallel, fully implicit implementation
whereby the interpolation (from donor to acceptor) is inserted as an
adapted discretisation on the donor cells, such that the resulting matrix
can be solved using the standard linear solvers.

Above solvers come with a set of tutorials, showing how to create and set-up
simple simulations from scratch.
2017-06-14 09:51:02 +01:00
bb67ccd37d ENH: Cleaned up hash table item found checks 2017-05-19 11:15:35 +01:00
140c5110fe STYLE: remove tabs from files and shorten line-length. 2017-04-10 16:11:33 +02:00
970da5aa75 BUG: waveModels - corrected reference water levels - thanks to Gabi Barajas 2017-03-30 14:57:36 +01:00
417ff3bc2a BUG: waveModels - corrected wavelength calculation for StokesV model; code clean-up 2017-02-03 12:17:42 +00:00
8b86d8b1b2 BUG: waveMOdels - corrected error introduced in commit 95f3adb1 2016-12-16 20:23:47 +00:00
95f3adb1fb ENH: waveModels - moved to main source tree and simplified 2016-12-15 12:45:14 +00:00