- encompasses isReadOptional or isReadRequired check
STYLE: allow LAZY_READ as a shorter synonym for READ_IF_PRESENT
- add helper for downgrading MUST_READ... to LAZY_READ
- similar to surface writing formats, also support optional
dictionary of reading options. The main beneficiary of this is the
ensight surface reader:
readOptions
{
ensight
{
masterOnly true;
}
}
This will restrict reading to the master rank. Surfaces and values
read will be broadcast to the other ranks, with the intention of
reducing load on the filesystem.
ENH: add writing of Dimensioned fields for areaWrite functionObject
- can be useful for examining finite-area source terms
- comprises a few different elements:
FilterField (currently packaged in PatchFunction1Types namespace)
~~~~~~~~~~~
The FilterField helper class provides a multi-sweep median filter
for a Field of data associated with a geometric point cloud.
The points can be freestanding or the faceCentres (or points)
of a meshedSurface, for example.
Using an initial specified search radius, the nearest point
neighbours are gathered and addressing/weights are built for them.
This currently uses an area-weighted, linear RBF interpolator
with provision for quadratic RBF interpolator etc.
After the weights and addressing are established,
the evaluate() method can be called to apply a median filter
to data fields, with a specified number of sweeps.
boundaryDataSurfaceReader
~~~~~~~~~~~~~~~~~~~~~~~~~
- a surfaceReader (similar to ensightSurfaceReader) when a general
point data reader is needed.
MappedFile
~~~~~~~~~~
- has been extended to support alternative surface reading formats.
This allows, for example, sampled ensight data to be reused for
mapping. Cavaet: multi-patch entries may still needs some work.
- additional multi-sweep median filtering of the input data.
This can be used to remove higher spatial frequencies when
sampling onto a coarse mesh.
smoothSurfaceData
~~~~~~~~~~~~~~~~~
- standalone application for testing of filter radii/sweeps
- use default initialize boundBox instead of invertedBox
- reset() instead of assigning from invertedBox
- extend (three parameter version) and grow method
- inflate(Random) instead of extend + re-assigning
- replaced ad hoc handling of formatOptions with coordSetWriter and
surfaceWriter helpers.
Accompanying this change, it is now possible to specify "default"
settings to be inherited, format-specific settings and have a
similar layering with surface-specific overrides.
- snappyHexMesh now conforms to setFormats
Eg,
formatOptions
{
default
{
verbose true;
format binary;
}
vtk
{
precision 10;
}
}
surfaces
{
surf1
{
...
formatOptions
{
ensight
{
scale 1000;
}
}
}
}
- for later reuse with fields (for example)
ENH: use 'scheduled' for surfaceWriter field merging (#2402)
- in tests with merging fields (surfaceWriter), 'scheduled' was
generally faster than 'nonBlocking' for scalars, minorly faster for
vectors.
Thus make 'scheduled' the default for the surfaceWriter but with a
user-option to adjust as required. Previously simply relied on
whichever default globalIndex had (currently nonBlocking).
Reuse globalIndex information from mergedSurf instead of
globalIndex::gatherOp to avoid an extra MPI call to gather sizes
each time.
These changes will not be noticable unless surface sampling is done
very frequently (eg, every iteration) and with large core counts.
- stem(), replace_name(), replace_ext(), remove_ext() etc
- string::contains() method - similar to C++23 method
Eg,
if (keyword.contains('/')) ...
vs
if (keyword.find('/') != std::string::npos) ...
- in continuation of #2565 (rotationCentre for surface output formats)
it is helpful to also support READ_IF_PRESENT behaviour for the
'origin' keyword.
This can be safely used wherever the coordinate system definition
is embedded within a sub-dictionary scope.
Eg,
dict1
{
coordinateSystem
{
origin (0 0 0); // now optional here
rotation ...;
}
}
but remains mandatory if constructed without a sub-dict:
dict2
{
origin (0 0 0); // still mandatory
e1 (1 0 0);
e3 (0 0 1);
}
With this change, the "transform" sub-dictionary can written
more naturally:
formatOptions
{
vtk
{
scale 1000; // m -> mm
transform
{
rotationCentre (1 0 0);
rotation axisAngle;
axis (0 0 1);
angle -45;
}
}
}
ENH: simplify handling of "coordinateSystem" dictionary lookups
- coordinateSystems::NewIfPresent method for optional entries:
coordSysPtr_ = coordinateSystem::NewIfPresent(mesh, dict);
Instead of
if (dict.found(coordinateSystem::typeName, keyType::LITERAL))
{
coordSysPtr_ =
coordinateSystem::New
(
mesh_,
dict,
coordinateSystem::typeName
);
}
else
{
coordSysPtr_.reset();
}
ENH: more consistent handling of priorities for binModels, forces (#2598)
- if the dictionaries are overspecified, give a 'coordinateSystem'
entry a higher prioriy than the 'CofR' shortcuts.
Was previously slightly inconsistent between the different models.
- commonly used calculations
ENH: add faPatch::patchRawSlice method
- slices using the nEdges() instead of the virtual size(),
which provides similar functionality as finite-volume has with
its distinction between polyPatch vs fvPatch patchSlice
- use patchInternal for obtaining faPatch, fvPatch information
- as an alternative output transform (supplementary to the regular
coordinate system specification - issue #2505) it is now possible to
specify the rotation centre directly.
Example:
formatOptions
{
vtk
{
scale 1000; // m -> mm
transform
{
origin (0 0 0);
rotationCentre (1 0 0);
rotation axisAngle;
axis (0 0 1);
angle -45;
}
}
}
This behaves like the transformPoints and surfaceTransformPoints
'-centre' option (formerly '-origin') in that it removes the
specified amount from the point locations, applies the rotation and
finally adds the specified amount back to the newly rotated point
locations.
The results of specifying a `rotationCentre` and a non-zero
coordinate system `origin` may not be intuitively evident.
- some central (core) bits under fileFormats,
- general surface reading relocated from sampling to surfMesh since it
does not use any sampling-specific components and will permit
re-use in meshTools (for example)
- remove old mask, subDir methods from ensightFile which were
previously relocated to ensightCase
- improve handling of 'undef' values when generating and reading,
respect Ensight component ordering when reading.
STYLE: qualify format/version/compression with IOstreamOption not IOstream
STYLE: reduce number of lookups when scanning {fa,fv}Solution
STYLE: call IOobject::writeEndDivider as static
- Ensight places restrictions both on variable names and on file
names. When generating the variable to file name correspondence for
use in the Ensight case file, previously used the less stringent
variable name for both sides of the variable table.
This would lead to situations where the (valid) variable name
referred to the wrong file name. Now apply the file-name restriction
consistently when creating the variable table. This is especially
necessary since the stem of the filename additionally has
specific characters (eg, ":<>[]") that can be problematic for the
shell or file-system.
ENH: avoid repeated '_' in qualified ensight names.
- when replacing undesirable characters (eg, ":<>[]") with '_', avoid
duplicates.
Eg, "PaSR<psiReactionThermo>:Qdot" becomes
"PaSR_psiReactionThermo_Qdot" instead of
"PaSR_psiReactionThermo__Qdot"
ENH: additional ensightCase::padded static method
- in situations where the simulation diverges, the ensight writing can
be incomplete. If the case file is updated prior to writing geometry
or fields, the generated case may refer to incomplete entries (which
make loading problematic).
NOTE: if multiple fields are sampled and written, this change cannot
entirely prevent case files addressing corrupt fields. For example,
1a. write U field, update case file with new times/fields
1b. write p field, update case file with new times/fields
2a. write U field, update case file with new times
2b. write p field, but fails
Since 2a already updates the case file with a new time-step entry
(for the U field), the case glob patterns will automatically include
the not-yet-written 'p' field. If this write fails with an
incomplete/corrupt field, the case file will still be addressing it!
- this allows the "relocation" of sampled surfaces. For example,
to reposition into a different coordinate system for importing
into CAD.
- incorporate output scaling for all surface writer types.
This was previously done on an adhoc basis for different writers,
but with now included in the base-level so that all writers
can automatically use scale + transform.
Example:
formatOptions
{
vtk
{
scale 1000; // m -> mm
transform
{
origin (0.05 0 0);
rotation axisAngle;
axis (0 0 1);
angle -45;
}
}
}
- when writing surface formats (eg, vtk, ensight etc) the sampled
surfaces merge the faces/points originating from different
processors into a single surface (ie, patch gatherAndMerge).
Previous versions of mergePoints simply merged all points possible,
which proves to be rather slow for larger meshes. This has now been
modified to only consider boundary points, which reduces the number
of points to consider. As part of this change, the reference point
is now always equivalent to the min of the bounding box, which
reduces the number of search loops. The merged points retain their
original order.
- inplaceMergePoints version to simplify use and improve code
robustness and efficiency.
ENH: make PrimitivePatch::boundaryPoints() less costly
- if edge addressing does not already exist, it will now simply walk
the local face edges directly to define the boundary points.
This avoids a rather large overhead of the full faceFaces,
edgeFaces, faceEdges addressing.
This operation is now more important since it is used in the revised
patch gatherAndMerge.
ENH: topological merge for mesh-based surfaces in surfaceFieldValue
- this can be used to apply a uniform field level to remove from
a sampled field. For example,
fieldLevel
{
"p.*" 1e5; // Absolute -> gauge [Pa]
T 273.15; // [K] -> [C]
U #eval{ 10/sqrt(3) }; // Uniform mag(U)=10
}
After the fieldLevel has been removed, any fieldScale is applied.
For example
fieldScale
{
"p.*" 0.01; // [Pa] -> [mbar]
}
The fieldLevel for vector and tensor fields may still need some
further refinement.
- when used for example with wallShearStress, the stress field is
initially created as incompressible but later updated with the
correct compressible/incompressible dimensions.
If this field is sampled as a surface and stored on the registry
the dimensions should be reset() and not '=' assigned, since that
causes a dimension check which will obviously fail.
ENH: provide fieldTypes::surface names (as per fieldTypes::volume)
ENH: reduce number of files for surface fields
- combine face and point field declarations/definitions,
simplify typeName definitions
- use FACE_DATA (was SURFACE_DATA) for similarity with polySurface
ENH: add expression value enumerations and traits
- simple enumeration of standard types (bool, label, scalar, vector)
that can be used as a value type-code for internal bookkeeping.
GIT: relocate pTraits into general traits/ directory
- with the changes in vtkCellArray, the legacy files now have
OFFSET, CONNECTIVITY information.
- support reading of both versions.
- continue to generate legacy format 2.0, since this is what
many programs still expect
- simplifies local toggling.
- centralize fileModification static variables into IOobject.
They were previously scattered between IOobject and regIOobject
- improves interface and data consistency.
Older signatures are still active (via the Foam_IOstream_extras
define).
- refine internals for IOstreamOption streamFormat, versionNumber
ENH: improve data alignment for IOstream and IOobject
- fit sizeof label/scalar into unsigned char
STYLE: remove dead code