functionObjects only get detroyed when the runTime gets destroyed. So the
mesh is already destroyed and we cannot hold e.g. a volScalarField since
that will try to 'checkOut' from the objectRegistry(=mesh) upon destruction.
Note that we only see this in chtMultiRegionFoam.
This had been used in functionObjects:
Info(log)<< "messages" << data << ....
in which it is not at all clear what the "log" argument does whereas
if (log) Info<< "messages" << data << ....
is totally clear and more efficient.
Previous behavior which may be useful for moving-mesh cases can be
selected using the optional entry:
writeVolume yes;
The initial volume is written in the log and data file header e.g.:
# Source : all
# Cells : 3829
# Volume : 9.943164e-01
Also added
sumMag | sum of component magnitudes
Previous behavior which may be useful for moving-mesh cases can be
selected using the optional entry:
writeTotalArea yes;
The initial total area is written in the log and data file header e.g.:
# Source : faceZone f0
# Faces : 8
# Area : 1.063860e-02
This approach simply accumulates data outside the range of the bins into
the first or last bin which may be OK for small motions. For larger
motions it may be better if the bins are updated or operate in a
coordinate system attached to the body for solid-body motion.
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=1560
The old separate incompressible and compressible libraries have been removed.
Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model. Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only. If they prove to
be generally useful they can be templated for compressible and
multiphase application.
The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.
The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff. This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.
For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.
All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.
All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.
Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics. Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models. I hope this brings benefits to all OpenFOAM users.
Henry G. Weller