- update the area-centres processor/processor information as part of
faMesh::init() after all of the global data and geometry data is
setup.
- improve flattenEdgeField helper to properly handle empty patches.
This change removes the false fails when testing edge-centre
redistribution (FULLDEBUG mode).
TUT: add filmPanel (rivulet) tutorial
- include constant/faMesh cleanup (cleanFaMesh) as part of standard
cleanCase
- simplify cleanPolyMesh function to now just warn about old
constant/polyMesh/blockMeshDict but not try to remove anything
- cleanup cellDist.vtu (decomposePar -dry-run) as well
ENH: foamRunTutorials - fallback to Allrun-parallel, Allrun-serial
TUT: call m4 with file argument instead of redirected stdin
TUT: adjust suffixes on decomposeParDict variants
- simpler to write for sampled cutting planes etc.
For example,
slice
{
type cuttingPlane;
point (0 0 0);
normal (0 0 1);
interpolate true;
}
instead of
slice
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0 0);
normal (0 0 1);
}
interpolate true;
}
STYLE: add noexcept to some plane methods
- this allows more flexibility when defining the location or intensity
of sources.
For example,
{
type scalarSemiImplicitSource;
volumeMode specific;
selectionMode all;
sources
{
tracer0
{
explicit
{
type exprField;
functions<scalar>
{
square
{
type square;
scale 0.0025;
level 0.0025;
frequency 10;
}
}
expression
#{
(hypot(pos().x() + 0.025, pos().y()) < 0.01)
? fn:square(time())
: 0
#};
}
}
}
}
ENH: SemiImplicitSource: handle "sources" with explicit/implicit entries
- essentially the same as injectionRateSuSp with Su/Sp,
but potentially clearer in purpose.
ENH: add Function1 good() method to define if function can be evaluated
- for example, provides a programmatic means of avoiding the 'none'
function
- can now specify sampled sets as dictionary entries instead of a list
entry.
can now use: sets { ... }
instead of: sets ( ... );
This is similar to sampled surfaces and makes it easier to
manage with dictionary manipulation tools.
TUT: update to use writeTime instead of outputTime
- use `#word` to concatenate, expand content with the resulting string
being treated as a word token. Can be used in dictionary or
primitive context.
In dictionary context, it fills the gap for constructing dictionary
names on-the-fly. For example,
```
#word "some_prefix_solverInfo_${application}"
{
type solverInfo;
libs (utilityFunctionObjects);
...
}
```
The '#word' directive will automatically squeeze out non-word
characters. In the block content form, it will also strip out
comments. This means that this type of content should also work:
```
#word {
some_prefix_solverInfo
/* Appended with application name (if defined) */
${application:+_} // Use '_' separator
${application} // The application
}
{
type solverInfo;
libs (utilityFunctionObjects);
...
}
```
This is admittedly quite ugly, but illustrates its capabilities.
- use `#message` to report expanded string content to stderr.
For example,
```
T
{
solver PBiCG;
preconditioner DILU;
tolerance 1e-10;
relTol 0;
#message "using solver: $solver"
}
```
Only reports on the master node.
- adjust commented-out evaluation to avoid warnings.
With code like this
```
#if 0
nxin #eval{ round($nxin / 5) };
#endif
```
The handling of the "#if 0 / #endif" clause uses the plain ISstream
parser to tokenize. This means that the "round(" is parsed as a word
with a mismatched closing ')', whereas the "#eval" parser will slurp
everything in until the closing brace and send it off as a string
to the expression parser.
- support wordRes for selecting patch names
- ownerPolyPatch specification is now optional, which simplifies input
and also supports a faMesh spanning different patches but with a
single boundary condition.
Alternatively, can specify more granularity if required.
```
polyMeshPatches ( "top.*" );
boundary
{
inlet1
{
type patch;
ownerPolyPatch top1; // <- specific to this portion
neighbourPolyPatch inlet;
}
inlet2
{
type patch;
ownerPolyPatch top2; // <- specific to this portion
neighbourPolyPatch inlet;
}
outlet
{
type patch;
neighbourPolyPatch outflow;
}
bound
{
type symmetry;
neighbourPolyPatch bound;
}
}
```
- adjust surfactantFoam/planeTransport tutorial to have partial
coverage of the plate by the finiteArea mesh.
Depending on the decomposition, the outflow boundary may coincide
with a processor patch (good for testing purposes).
- additional Allrun-parallel versions for targetted future behaviour
- additional debug information
- improve support for dictionary specification of constant, polynomial
and table entries. These previously only worked properly for
primitiveEntry, which causes confusion.
- extend table Function1 to include TableFile functionality.
Simplifies switching and modifying content.
The generalizedNewtonian viscocity models were ported from
the org version and added to the laminar turbulence framework.
This allows use in compressible and incompressible solvers
through the turbulence dictionary under the laminar sub-dictionary.
The thermal laminar viscosity is taken from the thermo for solvers
that use thermo library or from the transportProperties dictionary
for incompressible solvers.
At the moment the option to include viscocity models through the
transportDict is still available.
The icoTabulated equation of state was ported from the org version.
STYLE: use 'model' instead of 'laminarModel' in tutorials
- code reduction, documentation, code stubs for spheroid (#1901)
- make searchableSurfaceCollection available as 'collection'
for consistency with other objects