1) Adding interfaceHeight FO
2) Adding interfaceHeatResistance mass transfer model to
interCondensatingEvaporatingFoam with spread source approach
3) Reworking framework for icoReactingMultiphaseInterFoam
* Support default values for format/compress enum lookups.
- Avoids situations where the preferred default format is not ASCII.
For example, with dictionary input:
format binar;
The typing mistake would previously have caused formatEnum to
default to ASCII. We can now properly control its behaviour.
IOstream::formatEnum
(
dict.get<word>("format"), IOstream::BINARY
);
Allowing us to switch ascii/binary, using BINARY by default even in
the case of spelling mistakes. The mistakes are flagged, but the
return value can be non-ASCII.
* The format/compression lookup behave as pass-through if the lookup
string is empty.
- Allows the following to work without complaint
IOstream::formatEnum
(
dict.getOrDefault("format", word::null), IOstream::BINARY
);
- Or use constructor-like failsafe method
IOstream::formatEnum("format", dict, IOstream::BINARY);
- Apply the same behaviour with setting stream format/compression
from a word.
is.format("binar");
will emit a warning, but leave the stream format UNCHANGED
* Rationalize versionNumber construction
- constexpr constructors where possible.
Default construct is the "currentVersion"
- Construct from token to shift the burden to versionNumber.
Support token as argument to version().
Now:
is.version(headerDict.get<token>("version"));
or failsafe constructor method
is.version
(
IOstreamOption::versionNumber("version", headerDict)
);
Before (controlled input):
is.version
(
IOstreamOption::versionNumber
(
headerDict.get<float>("version")
)
);
Old, uncontrolled input - has been removed:
is.version(headerDict.lookup("version"));
* improve consistency, default behaviour for IOstreamOption construct
- constexpr constructors where possible
- add copy construct with change of format.
- construct IOstreamOption from streamFormat is now non-explicit.
This is a commonly expected result with no ill-effects
- `tensor` and `tensor2D` returns complex eigenvalues/vectors
- `symmTensor` and `symmTensor2D` returns real eigenvalues/vectors
- adds new test routines for eigendecompositions
- improves numerical stability by:
- using new robust algorithms,
- reordering the conditional branches in root-type selection
- includes restructuring and simplification of low-level ensight part
handling and refactor of backends to improve code reuse.
foamToEnsight
-------------
* new cellZone support.
This was previously only possible via a separate foamToEnsightParts
utility that was not parallelized.
* support for point fields.
* `-nearCellValue` option (as per foamToVTK)
* data indexing now uses values from the time index.
This is consistent with the ensightWrite function object and
can help with restarts.
* existing ensight directories are removed, unless the -no-overwrite
option is supplied
foamToEnsightParts
------------------
* now redundant and removed.
ensightOutputSurface (new class)
--------------------------------
* a lightweight wrapper for point/face references that is tailored
for the ensightSurfaceWriter. It uses compact face/point information
and is serial only, since this is the format requirements from the
surfaceWriter class.
ensightMesh (revised class)
---------------------------
* now only holds a polyMesh reference, which removes its dependency
on finiteVolume and allows it to be relocated under fileFormats
instead of conversion.
Removed classes: ensightParts, ensighPartFaces, ensightPartCells
- these were used by foamToEnsightParts, but not needed anymore.
Calculates the acoustic power due to the volume of isotropic turbulence
using Proudman's formula
The acoustic power \f$ P_A \f$ [W/m3] in terms of turbulence \f$ k \f$
and \f$ \epsilon \f$ is given as:
\f[
P_A = alpha_\epsilon \rho \epsilon M_t^5
\f]
where \f$ alpha_\epsilon \f$ is a constant (0.1) and
\f[
M_t = \frac{\sqrt{2 k}}{a_0}
\f]
with \f$ a_0 \f$ the speed of sound. The acoustic power is also output in
dB using:
\f[
L_P = 10 \log \frac{P_A}{P_ref}
\f]
where \f$ P_ref \f$ is a constant (1e-12 W/m3)
Usage
Example of function object specification to calculate the Proudman acoustic
power
proudmanAcousticPower1
{
type proudmanAcousticPower;
libs ("libfieldFunctionObjects.so");
...
// Required additional entries for incompressible calculations
rhoInf 1.225;
aRef 340;
}
Where the entries comprise:
Property | Description | Required | Default value
type | type name: proudmanAcousticPower | yes |
rhoInf | Freestream density for incompressible cases | no |
aRef | Reference spped of sound for incompressible cases | no |
alphaEps | Model coefficient | no | 0.1
Note
- The freestream density and reference speed of sound are only necessary
when a thermodynamics package is unavailable, typically for incompressible
cases.
- when using VTK from ParaView sources it can better to tag them as
such, but simultaneously not mask the ParaView with hardware
rendering.
The additional ParaView_MESA_DIR variable allows this.
The balance of library and path setup is unaffected by this.
DOC: update doc/BuildIssues
Limits fields to user-specified min and max bounds
Usage
Example of function object specification:
limitFields1
{
type limitFields;
libs ("libfieldFunctionObjects.so");
...
fields (U);
limit max;
max 100;
}
Where the entries comprise:
Property | Description | Required | Default
type | type name: limitFields | yes |
fields | list of fields to process | yes |
limit | bound to limit - see below | yes |
min | min limit value | partly |
max | max limit value | partly |
The "limit" entry can take the value:
- min : specify a minimum value
- max : specify a maximum value
- both : specify a minimum value and a maximum value
- silently deprecate 'startsWith', 'endsWith' methods
(added in 2016: 2b14360662), in favour of
'starts_with', 'ends_with' methods, corresponding to C++20 and
allowing us to cull then in a few years.
- handle single character versions of starts_with, ends_with.
- add single character version of removeEnd and silently deprecate
removeTrailing which did the same thing.
- drop the const versions of removeRepeated, removeTrailing.
Unused and with potential confusion.
STYLE: use shrink_to_fit(), erase()
Example - create p-rgh from p:
pressure-p-rgh
{
type pressure;
libs (fieldFunctionObjects);
writeControl writeTime;
mode static;
rho rhoInf;
rhoInf 1;
hydrostaticMode subtract;
g (0 -9.81 0);
hRef 0;
}
- the hydrostaticMode entry is optional - setting is shown during construction
- g and/or hRef values are retrieved from the database if not specified
- drop plugin support for Qt4 (old paraview)
- handle upcoming changes in VTK version naming in CMake files
* VTK_MAJOR_VERSION becomes VTK_VERSION_MAJOR etc.
- change contiguous from a series of global functions to separate
templated traits classes:
- is_contiguous
- is_contiguous_label
- is_contiguous_scalar
The static constexpr 'value' and a constexpr conversion operator
allow use in template expressions. The change also makes it much
easier to define general traits and to inherit from them.
The is_contiguous_label and is_contiguous_scalar are special traits
for handling data of homogeneous components of the respective types.
- a top-level cloud::nParcels() virtual, which is overloaded by the
first level of Cloud inheritance. This permits quick determination of
cloud sizes, even when retrieved from registry with the base level.
Eg,
cloud* cldPtr = mesh.cfindObject<cloud>("myCloud");
label nParcels = (cldPtr ? cldPtr->nParcels() : 0);
- make writeLagrangianPositions on by default unless explicitly
disabled in the InfoSwitches.
Flag output errors (where neither coordinates nor positions are
written) with Fatal.
- additional IOField helper functions in cloud
STYLE: simplify iterator inheritance
- An identity is often useful when generating connectivity and offset
information.
- The optional repeat value for vtk::write() allows it to also be used
as a fill method.