1) Add softWall rigidBody restrain
2) Add linearSpringDamper sixDoF restrain to work as soft rope
3) dynamicMotionSolverListFvMesh changed to dictionary based input
4) Add Time reference access to sixDof restraints
5) Add drivenLinearMotion to solidBodyMotionFunctions.
Integration of VOF MULES new interfaces. Update of VOF solvers and all instances
of MULES in the code.
Integration of reactingTwoPhaseEuler and reactingMultiphaseEuler solvers and sub-models
Updating reactingEuler tutorials accordingly (most of them tested)
New eRefConst thermo used in tutorials. Some modifications at thermo specie level
affecting mostly eThermo. hThermo mostly unaffected
New chtMultiRegionTwoPhaseEulerFoam solver for quenching and tutorial.
Phases sub-models for reactingTwoPhaseEuler and reactingMultiphaseEuler were moved
to src/phaseSystemModels/reactingEulerFoam in order to be used by BC for
chtMultiRegionTwoPhaseEulerFoam.
Update of interCondensatingEvaporatingFoam solver.
Modified revert of commit 6c6f777bd5.
- The "alphaContactAngleFvPatchScalarField" occurs in several
places in the code base:
- as abstract class for two-phase properties
- in various multiphase solvers
To resolve potential linking conflicts, renamed the abstract class
as "alphaContactAngleTwoPhaseFvPatchScalarField" instead.
This permits potential linking of two-phase and multi-phase
libraries without symbol conflicts and has no effect on concrete
uses of two-phase alphaContactAngle boudary conditions.
- Eg, with surface writers now in surfMesh, there are fewer libraries
depending on conversion and sampling.
COMP: regularize linkage ordering and avoid some implicit linkage (#1238)
- for some special cases we wish to mark command-line arguments as
being optional, in order to do our own treatment. For example,
when an arbitrary number of arguments should be allowed.
Now tag this situation with argList::noMandatoryArgs().
The argList::argsMandatory() query can then be used in any further
logic, including the standard default argument checking.
- with the new default check, can consolidate the special-purpose
"setRootCaseNonMandatoryArgs.H"
into the regular
"setRootCase.H"
- revert to a simple "setRootCase.H" and move all the listing related
bits to a "setRootCaseLists.H" file. This leaves the information
available for solvers, or whoever else wishes, without being
introduced everywhere.
- add include guards and scoping to the listing files and rename to
something less generic.
listOptions.H -> setRootCaseListOptions.H
listOutput.H -> setRootCaseListOutput.H
- deprecate dimensionedType constructors using an Istream in favour of
versions accepting a keyword and a dictionary.
Dictionary entries are almost the exclusive means of read
constructing a dimensionedType. By construct from the dictionary
entry instead of doing a lookup() first, we can detect possible
input errors such as too many tokens as a result of a input syntax
error.
Constructing a dimensionedType from a dictionary entry now has
two forms.
1. dimensionedType(key, dims, dict);
This is the constructor that will normally be used.
It accepts entries with optional leading names and/or
dimensions. If the entry contains dimensions, they are
verified against the expected dimensions and an IOError is
raised if they do not correspond. On conclusion, checks the
token stream for any trailing rubbish.
2. dimensionedType(key, dict);
This constructor is used less frequently.
Similar to the previous description, except that it is initially
dimensionless. If entry contains dimensions, they are used
without further verification. The constructor also includes a
token stream check.
This constructor is useful when the dimensions are entirely
defined from the dictionary input, but also when handling
transition code where the input dimensions are not obvious from
the source.
This constructor can also be handy when obtaining values from
a dictionary without needing to worry about the input dimensions.
For example,
Info<< "rho: " << dimensionedScalar("rho", dict).value() << nl;
This will accept a large range of inputs without hassle.
ENH: consistent handling of dimensionedType for inputs (#1083)
BUG: incorrect Omega dimensions (fixes#2084)
Update of overRhoPimpleDyMFoam and overInterDyMFoam solvers.
Adding corresponding tutorials with best possible settings
The main effort was put on reducing pressure spikes as the
stencil change with hole cells on the background mesh.
- use the dictionary 'get' methods instead of readScalar for
additional checking
Unchecked: readScalar(dict.lookup("key"));
Checked: dict.get<scalar>("key");
- In templated classes that also inherit from a dictionary, an additional
'template' keyword will be required. Eg,
this->coeffsDict().template get<scalar>("key");
For this common use case, the predefined getXXX shortcuts may be
useful. Eg,
this->coeffsDict().getScalar("key");
- instead of dict.lookup(name) >> val;
can use dict.readEntry(name, val);
for checking of input token sizes.
This helps catch certain types of input errors:
{
key1 ; // <- Missing value
key2 1234 // <- Missing ';' terminator
key3 val;
}
STYLE: readIfPresent() instead of 'if found ...' in a few more places.
- relocate some standard functionality to TimePaths to allow a lighter
means of managing time directories without using the entire Time
mechanism.
- optional enableLibs for Time construction (default is on)
and a corresponding argList::noLibs() and "-no-libs" option
STYLE:
- mark Time::outputTime() as deprecated MAY-2016
- use pre-increment for runTime, although there is no difference in
behaviour or performance.
- controlled by the the 'printExecutionFormat' InfoSwitch in
etc/controlDict
// Style for "ExecutionTime = " output
// - 0 = seconds (with trailing 's')
// - 1 = day-hh:mm:ss
ExecutionTime = 112135.2 s ClockTime = 113017 s
ExecutionTime = 1-07:08:55.20 ClockTime = 1-07:23:37
- Callable via the new Time::printExecutionTime() method,
which also helps to reduce clutter in the applications.
Eg,
runTime.printExecutionTime(Info);
vs
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
--
ENH: return elapsedClockTime() and clockTimeIncrement as double
- previously returned as time_t, which is less portable.
- when constructing dimensioned fields that are to be zero-initialized,
it is preferrable to use a form such as
dimensionedScalar(dims, Zero)
dimensionedVector(dims, Zero)
rather than
dimensionedScalar("0", dims, 0)
dimensionedVector("zero", dims, vector::zero)
This reduces clutter and also avoids any suggestion that the name of
the dimensioned quantity has any influence on the field's name.
An even shorter version is possible. Eg,
dimensionedScalar(dims)
but reduces the clarity of meaning.
- NB: UniformDimensionedField is an exception to these style changes
since it does use the name of the dimensioned type (instead of the
regIOobject).
- in many cases can just use lookupOrDefault("key", bool) instead of
lookupOrDefault<bool> or lookupOrDefault<Switch> since reading a
bool from an Istream uses the Switch(Istream&) anyhow
STYLE: relocated Switch string names into file-local scope
Improve alignment of its behaviour with std::unique_ptr
- element_type typedef
- release() method - identical to ptr() method
- get() method to get the pointer without checking and without releasing it.
- operator*() for dereferencing
Method name changes
- renamed rawPtr() to get()
- renamed rawRef() to ref(), removed unused const version.
Removed methods/operators
- assignment from a raw pointer was deleted (was rarely used).
Can be convenient, but uncontrolled and potentially unsafe.
Do allow assignment from a literal nullptr though, since this
can never leak (and also corresponds to the unique_ptr API).
Additional methods
- clone() method: forwards to the clone() method of the underlying
data object with argument forwarding.
- reset(autoPtr&&) as an alternative to operator=(autoPtr&&)
STYLE: avoid implicit conversion from autoPtr to object type in many places
- existing implementation has the following:
operator const T&() const { return operator*(); }
which means that the following code works:
autoPtr<mapPolyMesh> map = ...;
updateMesh(*map); // OK: explicit dereferencing
updateMesh(map()); // OK: explicit dereferencing
updateMesh(map); // OK: implicit dereferencing
for clarity it may preferable to avoid the implicit dereferencing
- prefer operator* to operator() when deferenced a return value
so it is clearer that a pointer is involve and not a function call
etc Eg, return *meshPtr_; vs. return meshPtr_();
and replaced interDyMFoam with a script which reports this change.
The interDyMFoam tutorials have been moved into the interFoam directory.
This change is one of a set of developments to merge dynamic mesh functionality
into the standard solvers to improve consistency, usability, flexibility and
maintainability of these solvers.
Henry G. Weller
CFD Direct Ltd.
interMixingFoam, multiphaseInterFoam: Updated for changes to interFoam
To unsure fvOptions are instantiated for post-processing createFvOptions.H must
be included in createFields.H rather than in the solver directly.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2733
BUG: porousSimpleFoam: moved createFvOptions.H into createFields.H for -postProcess option
Resolves bug-report https://bugs.openfoam.org/view.php?id=2733
BUG: solvers: Moved fvOption construction into createFields.H for post-processing
This ensures that the fvOptions are constructed for the -postProcessing option
so that functionObjects which process fvOption data operate correctly in this
mode.
"pos" now returns 1 if the argument is greater than 0, otherwise it returns 0.
This is consistent with the common mathematical definition of the "pos" function:
https://en.wikipedia.org/wiki/Sign_(mathematics)
However the previous implementation in which 1 was also returned for a 0
argument is useful in many situations so the "pos0" has been added which returns
1 if the argument is greater or equal to 0. Additionally the "neg0" has been
added which returns 1 if if the argument is less than or equal to 0.