- relax casting rules
* down-cast of labelToken to boolToken
* up-cast of wordToken to stringToken.
Can use isStringType() test for word or string types
- simplify constructors, move construct etc.
- expose reset() method as public, which resets to UNDEFINED and
clears allocated storage etc.
DEFEATURE: remove assign from word or string pointer.
- This was deprecated 2017-11 and now removed.
For this type of content transfer, move assignment should be used
instead of stealing pointers.
1) Add softWall rigidBody restrain
2) Add linearSpringDamper sixDoF restrain to work as soft rope
3) dynamicMotionSolverListFvMesh changed to dictionary based input
4) Add Time reference access to sixDof restraints
5) Add drivenLinearMotion to solidBodyMotionFunctions.
- change contiguous from a series of global functions to separate
templated traits classes:
- is_contiguous
- is_contiguous_label
- is_contiguous_scalar
The static constexpr 'value' and a constexpr conversion operator
allow use in template expressions. The change also makes it much
easier to define general traits and to inherit from them.
The is_contiguous_label and is_contiguous_scalar are special traits
for handling data of homogeneous components of the respective types.
- this is principally for cases where reduced indentation is desired,
such as when streaming to a memory location. If the indentation size
is zero or one, only a single space will be used to separate the
key/value.
This change does not affect the stream allocation size, since the
extra data falls within the padding.
ENH: relocate label/scalar sizes from Istream to IOstream.
- could allow future use for output streams as well?
Due to padding, reorganization has no effect on allocated size
of output streams.
STYLE: add read/write name qualifier to beginRaw, endRaw
- removes ambiguity for bi-directional streams
STYLE: fix inconsistent 'const' qualifier on std::streamsize
- base Ostream was without const, some derived streams with const
- allows full recovery of allocated space, not just addressable range.
This can be particularly useful for code patterns that repeatedly
reuse the same buffer space. For example,
DynamicList<char> buf(1024);
// some loop
{
OListStream os(std::move(buf));
os << ...
os.swap(buf);
}
Can read back from this buffer as a second operation:
{
UIListStream is(buf);
is >> ...
}
- unfriend HashSet, HashTable IO operators
- global min(), max(), minMax() functions taking a labelHashSet and an
optional limit. For example,
labelHashSet set = ...;
Info<< "min is " << min(set) << nl;
Info<< "max (non-negative) " << max(set, 0) << nl;
- make HashTable iterator '->' dereferencing more consistent by also
supporting non-pointer types as well.
- read HashTable values in-situ to avoid copying
A set of libraries and executables creating a workflow for performing
gradient-based optimisation loops. The main executable (adjointOptimisationFoam)
solves the flow (primal) equations, followed by the adjoint equations and,
eventually, the computation of sensitivity derivatives.
Current functionality supports the solution of the adjoint equations for
incompressible turbulent flows, including the adjoint to the Spalart-Allmaras
turbulence model and the adjoint to the nutUSpaldingWallFunction, [1], [2].
Sensitivity derivatives are computed with respect to the normal displacement of
boundary wall nodes/faces (the so-called sensitivity maps) following the
Enhanced Surface Integrals (E-SI) formulation, [3].
The software was developed by PCOpt/NTUA and FOSS GP, with contributions from
Dr. Evangelos Papoutsis-Kiachagias,
Konstantinos Gkaragounis,
Professor Kyriakos Giannakoglou,
Andy Heather
and contributions in earlier version from
Dr. Ioannis Kavvadias,
Dr. Alexandros Zymaris,
Dr. Dimitrios Papadimitriou
[1] A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, and C. Othmer.
Continuous adjoint approach to the Spalart-Allmaras turbulence model for
incompressible flows. Computers & Fluids, 38(8):1528–1538, 2009.
[2] E.M. Papoutsis-Kiachagias and K.C. Giannakoglou. Continuous adjoint methods
for turbulent flows, applied to shape and topology optimization: Industrial
applications. 23(2):255–299, 2016.
[3] I.S. Kavvadias, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. On the
proper treatment of grid sensitivities in continuous adjoint methods for shape
optimization. Journal of Computational Physics, 301:1–18, 2015.
Integration into the official OpenFOAM release by OpenCFD
- when running in serial but within a processor directory,
argList::globalPath() is to be used instead of Time.globalPath()
For other cases there is no difference.