boundaryRadiationProperties: updating to new format
dynamicMeshDict and snappyHexMeshDict in utorials/multiphase/interDyMFoam/RAS/motorBike to follow Mattijs Git lab id 381
Now the interFoam and compressibleInterFoam families of solvers use the same
alphaEqn formulation and supporting all of the MULES options without
code-duplication.
The semi-implicit MULES support allows running with significantly larger
time-steps but this does reduce the interface sharpness.
- collects the log information only, without running any cases.
This can be useful if the user has terminated the test prematurely
but nonetheless wishes to summarize the log output.
By default snappyHexMesh writes files relating to the hex-splitting process into
the polyMesh directory: cellLevel level0Edge pointLevel surfaceIndex
but by setting the noRefinement flag:
writeFlags
(
noRefinement
.
.
.
);
these optional files which are generally not needed are not written.
If you run the three stages of snappyHexMesh separately or run a dynamic mesh
solver supporting refinement and unrefinement these files are needed
and "noRefinement" should not be set.
Avoids slight phase-fraction unboundedness at entertainment BCs and improved
robustness.
Additionally the phase-fractions in the multi-phase (rather than two-phase)
solvers are adjusted to avoid the slow growth of inconsistency ("drift") caused
by solving for all of the phase-fractions rather than deriving one from the
others.
New reactingFoam tutorial counterFlowFlame2DLTS_GRI_TDAC demonstrates this new
functionality.
Additionally the ISAT table growth algorithm has been further optimized
providing an overall speedup of between 15% and 38% for the tests run so far.
Updates to TDAC and ISAT provided by Francesco Contino.
Implementation updated and integrated into OpenFOAM-dev by
Henry G. Weller, CFD Direct Ltd with the help of Francesco Contino.
Original code providing all algorithms for chemistry reduction and
tabulation contributed by Francesco Contino, Tommaso Lucchini, Gianluca
D’Errico, Hervé Jeanmart, Nicolas Bourgeois and Stéphane Backaert.
e.g. in tutorials/heatTransfer/buoyantSimpleFoam/externalCoupledCavity/0/T
hot
{
type externalCoupledTemperature;
commsDir "${FOAM_CASE}/comms";
file "data";
initByExternal yes;
log true;
value uniform 307.75; // 34.6 degC
}
Previously both 'file' and 'fileName' were used inconsistently in different
classes and given that there is no confusion or ambiguity introduced by using
the simpler 'file' rather than 'fileName' this change simplifies the use and
maintenance of OpenFOAM.
Bounding thermo.rho in rhoPorousSimpleFoam.
Changing initial time step in externalSolarLoad tutorial.
Commenting out momemtun source term in steamInjection which causes problems
Integration of ihcantabria wave models
Integration of functionality produced by The Environmental Hydraulics Institute "IHCantabria" (http://www.ihcantabria.com/en/)
- Original code introduced in commit 95e9467e
- Restructured and updated by OpenCFD into a new `waveModels` library available to the interFoam family of solvers
Main source:
`$FOAM_SRC/waveModels`
Tutorials:
`$FOAM_TUTORIALS/multiphase/interFoam/waveExample*`
Capabilities include:
- Wave generation
- Solitary wave using Boussinesq theory
- Cnoidal wave theory
- StokesI, StokesII, StokesV wave theory
- Active wave absorption at the inflow/outflow boundaries based on shallow water theory
IHCantabria Authors:
- Javier Lopez Lara (jav.lopez@unican.es)
- Gabriel Barajas (barajasg@unican.es)
- Inigo Losada (losadai@unican.es)
See merge request !88