- These are not defined in the C++ standard for cmath, so allow for
compilation without them. Will need to provide replacements in the
future or rework.
- new regExpCxx wrapper for C++11 regex support with drop-in
compatibility with existing code.
- regExpPosix (was regExp), for future phase out in favour of regExpCxx.
- The regExp header will continue to be used for defining an
appropriate typedef corresponding to the preferred implementation.
- PtrDynList support for move append list:
can be used to concatenate pointer lists into a single one
- include resize in PtrDynList squeezeNull as being a natural
combination
- support sorting operations for pointer lists (PtrListOps)
- remove writeGeometry() in favour of write() and make it pure virtual
so that all writers must explicitly deal with it.
- establish proxy extension at construction time and treated as an
invariant thereafter. This avoids potentially surprising changes in
behaviour when writing.
- this is a simple container for fields with i-j-k addressing.
It does not support field operations directly, but is primarily
intended to be used when assembling field information with i-j-k
logic. After assembly, the field can be transferred to a regular
field for normal operations. Eg,
IjkField<scalar> assemble({15, 16, 200});
// .. fill in i-j-k fields
Field<scalar> final(std::move(assemble));
assemble.clear(); // be pedantic
...
- While a rectilinear mesh can be created with blockMesh, not every mesh
created with blockMesh will satisfy the requirements for being a
rectilinear mesh.
This alternative to blockMesh uses a single block that is aligned
with the xy-z directions and specifications of the control points,
mesh divisions and expansion ratios. For example,
x
{
points ( -13.28 -0.10 6.0 19.19 );
nCells ( 10 12 10 );
ratios ( 0.2 1 5 );
}
y { ... }
z { ... }
With only one block, the boundary patch definition is simple and the
canonical face number is used directly. For example,
inlet
{
type patch;
faces ( 0 );
}
outlet
{
type patch;
faces ( 1 );
}
sides
{
type patch;
faces ( 2 3 );
}
...
- After a mesh is defined, it is trivial to retrieve mesh-related
information such as cell-volume, cell-centres for any i-j-k location
without an actual polyMesh.
STYLE: remove -noFunctionObjects from blockMesh
- no time loop, so function objects cannot be triggered anyhow.
- PtrList::release() method.
Similar to autoPtr and unique_ptr and clearer in purpose than
using set(i,nullptr)
- Construct from List of pointers, taking ownership.
Useful when upgrading code. Eg,
List<polyPatch*> oldList = ...;
PtrList<polyPatch> newList(oldList);
...
BUG: incorrect resizing method names (PtrDynList) in previously unused code
- The writers have changed from being a generic state-less set of
routines to more properly conforming to the normal notion of a writer.
These changes allow us to combine output fields (eg, in a single
VTK/vtp file for each timestep).
Parallel data reduction and any associated bookkeeping is now part
of the surface writers.
This improves their re-usability and avoids unnecessary
and premature data reduction at the sampling stage.
It is now possible to have different output formats on a per-surface
basis.
- A new feature of the surface sampling is the ability to "store" the
sampled surfaces and fields onto a registry for reuse by other
function objects.
Additionally, the "store" can be triggered at the execution phase
as well
- previously just removed duplicate literals, but now remove any
duplicates.
- Replace previous wordHashSet implementation with a linear search
instead. The lists are normally fairly small and mostly just have
unique entries anyhow. This reduces the overall overhead.
- can now safely use labelList::null() instead of emptyLabelList for
return values. No special treatment required for lists.
Possible replacements:
if (notNull(list) && list.size()) -> if (list.size())
if (isNull(list) || list.empty()) -> if (list.empty())
The receiver may still wish to handle differently to distinguish
between a null list and an empty list, but no additional special
protection is required when obtaining sizes, traversing, outputting
etc.
- previously had a single pointer/value zeros (8 bytes), this meant
that the reinterpret cast to a List would yield a reference that
could be unsafe under certain conditions.
Eg,
const labelList& myList = labelList::null();
Info<< myList.size() << nl; // OK since size is the first parameter
SubList<label>(myList, 0); // Unsafe
The SubList usage is unsafe since it passes in pointer and size into
the underlying UList. However, the pointer from the labelList::null()
will be whatever happens to be around in memory immediately after the
NullObject singleton. This is mostly not a problem if the List size
is always checked, but does mean that the data pointer is rather
dubious.
- Increase the size of the nullObject singleton to 32 bytes of zeros
to ensure that most reinterpret casting will not result in objects
that reference arbitrary memory.
The 32-byte data size is rather arbitrary, but covers most basic
containers.
- changed ensightOutput from a class solely comprising static methods to
a namespace and added in sub-namespaces Detail and Serial.
This makes it easier to "mix-in" functions at different levels.
Refactored and combined some serial/parallel code where possible.
The general ensightOutput namespace has now shifted to be in the
fileFormats lib, while leaving volField outputs in the conversion lib
and cloud outputs in the lagrangian-intermediate lib.
The ensightCloud namespace is now simply folded into the new
ensightOutput namespace.
These changes clean up some code, reduce fragmentation and
duplication and removes the previous libconversion dependency for
sampling.
- use int for ensight nTypes constexpr
Note: issue #1176 is unaffected except for the change in file name:
ensightOutputTemplates.C -> ensightOutputVolFieldTemplates.C
- in some circumstances we need to pass a bool value upwards to the
caller and know if the true/false value was set based on real input
or is a default value.
Eg, in the object::read() we might normally have
enabled_(dict.readIfPresent(key, true));
but would lose information about why the value is true/false.
We can change that by using
enabled_(dict.readIfPresent<Switch>(key, Switch::DEFAULT_ON));
After which we can use this information is testing.
if
(
child.enabled().nonDefault()
? child.enabled()
: parent.enabled()
)
{ ... }
And thus enable output if the parent requested it explicitly or by
default and it has not been explicitly disabled in the child.
No difference when testing as a bool and the text representation
of DEFAULT_ON / DEFAULT_OFF will simply be "true" / "false".
ENH: add construction of Switch from dictionary (similar to Enum)
- Can result in inadvertent conversions where the user should really
know or check if the pointer is valid prior to using.
- Still have several places to fix that are using the deprecated copy
construct and copy assignment