Generally fields and objects are selected using the 'field[s]' and
'object[s]' keywords but this was not consistent between all
functionObject, fvOptions etc. and now fixed by applying the following
renaming:
fieldName -> field
fieldNames -> fields
objectName -> object
objectNames -> objects
splitMeshRegions: handle flipping of faces for surface fields
subsetMesh: subset dimensionedFields
decomposePar: use run-time selection of decomposition constraints. Used to
keep cells on particular processors. See the decomposeParDict in
$FOAM_UTILITIES/parallel/decomposePar:
- preserveBaffles: keep baffle faces on same processor
- preserveFaceZones: keep faceZones owner and neighbour on same processor
- preservePatches: keep owner and neighbour on same processor. Note: not
suitable for cyclicAMI since these are not coupled on the patch level
- singleProcessorFaceSets: keep complete faceSet on a single processor
- refinementHistory: keep cells originating from a single cell on the
same processor.
decomposePar: clean up decomposition of refinement data from snappyHexMesh
reconstructPar: reconstruct refinement data (refineHexMesh, snappyHexMesh)
reconstructParMesh: reconstruct refinement data (refineHexMesh, snappyHexMesh)
redistributePar:
- corrected mapping surfaceFields
- adding processor patches in order consistent with decomposePar
argList: check that slaves are running same version as master
fvMeshSubset: move to dynamicMesh library
fvMeshDistribute:
- support for mapping dimensionedFields
- corrected mapping of surfaceFields
parallel routines: allow parallel running on single processor
Field: support for
- distributed mapping
- mapping with flipping
mapDistribute: support for flipping
AMIInterpolation: avoid constructing localPoints
These new names are more consistent and logical because:
primitiveField():
primitiveFieldRef():
Provides low-level access to the Field<Type> (primitive field)
without dimension or mesh-consistency checking. This should only be
used in the low-level functions where dimensional consistency is
ensured by careful programming and computational efficiency is
paramount.
internalField():
internalFieldRef():
Provides access to the DimensionedField<Type, GeoMesh> of values on
the internal mesh-type for which the GeometricField is defined and
supports dimension and checking and mesh-consistency checking.
//- Disallow default shallow-copy assignment
//
// Assignment of UList<T> may need to be either shallow (copy pointer)
// or deep (copy elements) depending on context or the particular type
// of list derived from UList and it is confusing and prone to error
// for the default assignment to be either. The solution is to
// disallow default assignment and provide separate 'shallowCopy' and
// 'deepCopy' member functions.
void operator=(const UList<T>&) = delete;
//- Copy the pointer held by the given UList.
inline void shallowCopy(const UList<T>&);
//- Copy elements of the given UList.
void deepCopy(const UList<T>&);
Contributed by Mattijs Janssens.
1. Any non-blocking data exchange needs to know in advance the sizes to
receive so it can size the buffer. For "halo" exchanges this is not
a problem since the sizes are known in advance but or all other data
exchanges these sizes need to be exchanged in advance.
This was previously done by having all processors send the sizes of data to
send to the master and send it back such that all processors
- had the same information
- all could work out who was sending what to where and hence what needed to
be received.
This is now changed such that we only send the size to the
destination processor (instead of to all as previously). This means
that
- the list of sizes to send is now of size nProcs v.s. nProcs*nProcs before
- we cut out the route to the master and back by using a native MPI
call
It causes a small change to the API of exchange and PstreamBuffers -
they now return the sizes of the local buffers only (a labelList) and
not the sizes of the buffers on all processors (labelListList)
2. Reversing the order of the way in which the sending is done when
scattering information from the master processor to the other
processors. This is done in a tree like fashion. Each processor has a
set of processors to receive from/ send to. When receiving it will
first receive from the processors with the least amount of
sub-processors (i.e. the ones which return first). When sending it
needs to do the opposite: start sending to the processor with the
most amount of sub-tree since this is the critical path.
The deprecated non-const tmp functionality is now on the compiler switch
NON_CONST_TMP which can be enabled by adding -DNON_CONST_TMP to EXE_INC
in the Make/options file. However, it is recommended to upgrade all
code to the new safer tmp by using the '.ref()' member function rather
than the non-const '()' dereference operator when non-const access to
the temporary object is required.
Please report any problems on Mantis.
Henry G. Weller
CFD Direct.
in case of tmp misuse.
Simplified tmp reuse pattern in field algebra to use tmp copy and
assignment rather than the complex delayed call to 'ptr()'.
Removed support for unused non-const 'REF' storage of non-tmp objects due to C++
limitation in constructor overloading: if both tmp(T&) and tmp(const T&)
constructors are provided resolution is ambiguous.
The turbulence libraries have been upgraded and '-DCONST_TMP' option
specified in the 'options' file to switch to the new 'tmp' behavior.
mapNearestAMI: move normalisation to AMIMethod.
Avoids cells shared among processors to be counted multiple times and having
weights > 1.
See merge request !37
- cyclicACMIFvPatchField::updateCoeffs() now again redirects to
fvPatchField::updateCoeffs(const scalarField& weights);
- which redirects to fvPatchField::updateCoeffs();
- except on wall functions where the weights are used to switch off
turbulence generation
- renamed the updateCoeffs on the fixedFluxPressure bc to updateSnGrad.
Moved file path handling to regIOobject and made it type specific so
now every object can have its own rules. Examples:
- faceZones are now processor local (and don't search up anymore)
- timeStampMaster is now no longer hardcoded inside IOdictionary
(e.g. uniformDimensionedFields support it as well)
- the distributedTriSurfaceMesh is properly processor-local; no need
for fileModificationChecking manipulation.