Corrects turbulence viscosity field (e.g. nut) within a specified
region by applying a maximum limit, set according to a coefficient
multiplied by the laminar viscosity:
\nu_{t,max} = c \nu
Corrections applied to:
nut | Turbulence vicosity [m2/s2]
Usage
Minimal example by using \c constant/fvOptions:
\verbatim
limitTurbulenceViscosity1
{
// Mandatory entries (unmodifiable)
type limitTurbulenceViscosity;
// Optional entries (runtime modifiable)
nut nut;
c 1e5;
// Mandatory/Optional (inherited) entries
...
}
- this complements the whichPatch(meshFacei) method [binary search]
and the list of patchID() by adding internal range checks.
eg,
Before
~~~~~~
if (facei >= mesh.nInternalFaces() && facei < mesh.nFaces())
{
patchi = pbm.patchID()[facei - mesh.nInternalFaces()];
...
}
After
~~~~~
patchi = pbm.patchID(facei);
if (patchi >= 0)
{
...
}
ENH: add pTraits and IO for std::int8_t
STYLE: cull some implicitly available includes
- pTraits.H is included by label/scalar etc
- zero.H is included by UList
STYLE: cull redundant forward declarations for Istream/Ostream
- pattern as per surfaceFieldValue::setFaceZoneFaces()
1. define faceId, facePatchId assuming an internal face
2. if actually a boundary face:
- get facePatchId
- ignore if emptyPolyPatch or coupledPolyPatch (neighbour side)
- get patch relative faceId
This currently seems to be the least amount of code clutter.
ENH: recover some memory my shrinking lists in fluxSummary
BUG: potentially trailing rubbish in the heatExchangerModel lists
- the final resize to length actually used was missing.
Does not affect any released versions
The improvements include:
- Allowing overset patches to be displaced outside background domain.
- The approach does not support overlapping of multiple inset meshes
on top of background domain.
- Allowing fringe faces to walk away from hole cells in background domain.
- The approach was not extensibly tested with overlapping patches.
- Improving mass conservation.
- Various experimental entries are removed: massFluxInterpolation, ddtCorr.
- New entries:
- oversetAdjustPhi: adds a flux correction outside the pressure equation.
- massCorrection: adds an implicit correction.
- in continuation of #2565 (rotationCentre for surface output formats)
it is helpful to also support READ_IF_PRESENT behaviour for the
'origin' keyword.
This can be safely used wherever the coordinate system definition
is embedded within a sub-dictionary scope.
Eg,
dict1
{
coordinateSystem
{
origin (0 0 0); // now optional here
rotation ...;
}
}
but remains mandatory if constructed without a sub-dict:
dict2
{
origin (0 0 0); // still mandatory
e1 (1 0 0);
e3 (0 0 1);
}
With this change, the "transform" sub-dictionary can written
more naturally:
formatOptions
{
vtk
{
scale 1000; // m -> mm
transform
{
rotationCentre (1 0 0);
rotation axisAngle;
axis (0 0 1);
angle -45;
}
}
}
ENH: simplify handling of "coordinateSystem" dictionary lookups
- coordinateSystems::NewIfPresent method for optional entries:
coordSysPtr_ = coordinateSystem::NewIfPresent(mesh, dict);
Instead of
if (dict.found(coordinateSystem::typeName, keyType::LITERAL))
{
coordSysPtr_ =
coordinateSystem::New
(
mesh_,
dict,
coordinateSystem::typeName
);
}
else
{
coordSysPtr_.reset();
}
ENH: more consistent handling of priorities for binModels, forces (#2598)
- if the dictionaries are overspecified, give a 'coordinateSystem'
entry a higher prioriy than the 'CofR' shortcuts.
Was previously slightly inconsistent between the different models.
- list of faces() was using mesh-faces, not area-faces
ENH: provision for patch and faceSet selection in fa::faceSetOption
- adjust most of the faOptions to respect subset of faces
ENH: support Function1 for externalHeatFluxSource
BUG: incorrect handling of fixedPower (externalHeatFluxSource)
- used local areas instead of global total area
- rename effectivenessHeatExchangerSource -> heatExchangerSource
- introduce submodels:
- effectivenessTable (previous behaviour)
- referenceTemperature
- the referenceTemperature submodel uses a reference temperature
which is either a scalar or calculated from a 2D interpolation
table in order to calculate the heat exchange.
speciesSorption is a zeroGradient BC which absorbs mass given by a first
order time derivative, absoprtion rate and an equilibrium value
calculated based on internal species values next to the wall.
patchCellsSource is a source fvOption which applies to the corresponding
species and apply the source calculated on the speciesSorption BC.
A new abstract virtual class was created to group BC's which
don't introduce a source to the matrix (i.e zeroGradient) but calculate
a mass sink/source which should be introduced into the matrix. This
is done through the fvOption patchCellsSource.
- ensightWrite, vtkWrite, fv::cellSetOption
ENH: additional topoSet "ignore" action
- this no-op can be used to skip an action step, instead of removing
the entire entry
- this allows more flexibility when defining the location or intensity
of sources.
For example,
{
type scalarSemiImplicitSource;
volumeMode specific;
selectionMode all;
sources
{
tracer0
{
explicit
{
type exprField;
functions<scalar>
{
square
{
type square;
scale 0.0025;
level 0.0025;
frequency 10;
}
}
expression
#{
(hypot(pos().x() + 0.025, pos().y()) < 0.01)
? fn:square(time())
: 0
#};
}
}
}
}
ENH: SemiImplicitSource: handle "sources" with explicit/implicit entries
- essentially the same as injectionRateSuSp with Su/Sp,
but potentially clearer in purpose.
ENH: add Function1 good() method to define if function can be evaluated
- for example, provides a programmatic means of avoiding the 'none'
function
- avoid any operations for zero sources
- explicit sources are applied to the entire mesh can be added directly,
without an intermediate DimensionedField
- update some legacy faMatrix/fvMatrix methods that used Istream
instead of dictionary or dimensionSet for their parameters.
Simplify handling of tmps.
- align faMatrix methods with the updated their fvMatrix counterparts
(eg, DimensionedField instead of GeometricField for sources)
- similar to the geometric decomposition constraint,
allows a compositing selection of cells based on topoSet sources
which also include various searchableSurface mechanisms.
This makes for potentially easier placement of sources without
resorting to defining a cellSet.
ENH: support zone group selection for fv::cellSetOption and fa::faceSetOption
* lessEqOp -> lessEqualOp
* greaterEqOp -> greaterEqualOp
to avoid ambiguitity with other forms such as 'plusEqOp' where the
'Eq' implies an assigment. The name change also aligns better with
C++ <functional> names such as std::less_equal, std::greater_equal
ENH: simple labelRange predicates gt0/ge0/lt0/le0
- mirrors scalarRange tests.
Lower overhead than using labelMinMax::ge(0) etc since it does not
create an intermediate (is stateless) and can be used as a constexpr
- percent of cells is taken relative to selection size.
- percent of faces is taken relative to the number of boundary faces
that do not fix velocity themselves.
ENH: avoid correctBoundaryConditions() if values were not limited