rhoSimpleFoam now instantiates the lower-level fluidThermo which instantiates
either a psiThermo or rhoThermo according to the 'type' specification in
thermophysicalProperties, e.g.
thermoType
{
type hePsiThermo;
mixture pureMixture;
transport sutherland;
thermo janaf;
equationOfState perfectGas;
specie specie;
energy sensibleInternalEnergy;
}
instantiates a psiThermo for a perfect gas with JANAF thermodynamics, whereas
thermoType
{
type heRhoThermo;
mixture pureMixture;
properties liquid;
energy sensibleInternalEnergy;
}
mixture
{
H2O;
}
instantiates a rhoThermo for water, see new tutorial
compressible/rhoSimpleFoam/squareBendLiq.
In order to support complex equations of state the pressure can no longer be
unlimited and rhoSimpleFoam now limits the pressure rather than the density to
handle start-up more robustly.
For backward compatibility 'rhoMin' and 'rhoMax' can still be used in the SIMPLE
sub-dictionary of fvSolution which are converted into 'pMax' and 'pMin' but it
is better to set either 'pMax' and 'pMin' directly or use the more convenient
'pMinFactor' and 'pMinFactor' from which 'pMax' and 'pMin' are calculated using
the fixed boundary pressure or reference pressure e.g.
SIMPLE
{
nNonOrthogonalCorrectors 0;
pMinFactor 0.1;
pMaxFactor 1.5;
transonic yes;
consistent yes;
residualControl
{
p 1e-3;
U 1e-4;
e 1e-3;
"(k|epsilon|omega)" 1e-3;
}
}
The fundamental properties provided by the specie class hierarchy were
mole-based, i.e. provide the properties per mole whereas the fundamental
properties provided by the liquidProperties and solidProperties classes are
mass-based, i.e. per unit mass. This inconsistency made it impossible to
instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV
transport solvers on liquidProperties. In order to combine VoF with film and/or
Lagrangian models it is essential that the physical propertied of the three
representations of the liquid are consistent which means that it is necessary to
instantiate the thermodynamics packages on liquidProperties. This requires
either liquidProperties to be rewritten mole-based or the specie classes to be
rewritten mass-based. Given that most of OpenFOAM solvers operate
mass-based (solve for mass-fractions and provide mass-fractions to sub-models it
is more consistent and efficient if the low-level thermodynamics is also
mass-based.
This commit includes all of the changes necessary for all of the thermodynamics
in OpenFOAM to operate mass-based and supports the instantiation of
thermodynamics packages on liquidProperties.
Note that most users, developers and contributors to OpenFOAM will not notice
any difference in the operation of the code except that the confusing
nMoles 1;
entries in the thermophysicalProperties files are no longer needed or used and
have been removed in this commet. The only substantial change to the internals
is that species thermodynamics are now "mixed" with mass rather than mole
fractions. This is more convenient except for defining reaction equilibrium
thermodynamics for which the molar rather than mass composition is usually know.
The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and
equilibriumFlameT utilities in which the species thermodynamics are
pre-multiplied by their molecular mass to effectively convert them to mole-basis
to simplify the definition of the reaction equilibrium thermodynamics, e.g. in
equilibriumCO
// Reactants (mole-based)
thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W();
// Oxidant (mole-based)
thermo O2(thermoData.subDict("O2")); O2 *= O2.W();
thermo N2(thermoData.subDict("N2")); N2 *= N2.W();
// Intermediates (mole-based)
thermo H2(thermoData.subDict("H2")); H2 *= H2.W();
// Products (mole-based)
thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W();
thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W();
thermo CO(thermoData.subDict("CO")); CO *= CO.W();
// Product dissociation reactions
thermo CO2BreakUp
(
CO2 == CO + 0.5*O2
);
thermo H2OBreakUp
(
H2O == H2 + 0.5*O2
);
Please report any problems with this substantial but necessary rewrite of the
thermodynamic at https://bugs.openfoam.org
Henry G. Weller
CFD Direct Ltd.
which provided warning about backward-compatibility issue with setting div
schemes for steady-state. It caused confusion by generating incorrect warning
messages for compressible cases for which the 'bounded' should NOT be applied to
the 'div(phid,p)'.
- "$FOAM_USER_APPBIN" and "$FOAM_USER_LIBBIN" have been added to
"foamOldDirs" in "etc/bashrc" and "etc/config.sh/unset"
- "$OPAL_PREFIX" is now undefined in the option "SYSTEMOPENMPI" within
"etc/config.sh/mpi", but only if the path defined in this variable
is cleaned when using "foamCleanPath".
- "$OPAL_PREFIX" is now also conditionally undefined in
"etc/config.sh/unset" when the path is picked up by "foamCleanPath".
Patch contributed by Bruno Santos
Resolved bug-report http://bugs.openfoam.org/view.php?id=2210
The change from C++0x to C++11 allows all of C++11 functionality to be
used in OpenFOAM, in particular constructor delegation which avoids code
duplication or constructor helper functions. However, this also means a
change to the minimum gcc version supported which is now 4.7 rather than
4.5.
Note that gcc-4.7 does not support the entire C++11 standard but does
support all of the functionality currently needed for further OpenFOAM
development. The minimum gcc-version which supports the entire C++11
standard is 4.8 which is now the recommended minimum gcc version.
Replaced the 'postProcess' argument to the 'write' and 'execute'
functions with the single static member 'postProcess' in the
functionObject base-class.