To be used instead of zeroGradientFvPatchField for temporary fields for
which zero-gradient extrapolation is use to evaluate the boundary field
but avoiding fields derived from temporary field using field algebra
inheriting the zeroGradient boundary condition by the reuse of the
temporary field storage.
zeroGradientFvPatchField should not be used as the default patch field
for any temporary fields and should be avoided for non-temporary fields
except where it is clearly appropriate;
extrapolatedCalculatedFvPatchField and calculatedFvPatchField are
generally more suitable defaults depending on the manner in which the
boundary values are specified or evaluated.
The entire OpenFOAM-dev code-base has been updated following the above
recommendations.
Henry G. Weller
CFD Direct
Vastly reduces the scattering and churning behaviour of packed beds.
Development provided by Will Bainbridge <github.com/will-bainbridge>
See also http://www.openfoam.org/mantisbt/view.php?id=1994
RunFunctions: Added "isTest()" argument parsing function
tutorials: Updated Allrun scripts to propagate the "-test" option
tutorials: Removed the lower Alltest scripts and updated the Allrun to
use the "isTest()" function to handle test-specific operation
The boundary conditions of HbyA are now constrained by the new "constrainHbyA"
function which applies the velocity boundary values for patches for which the
velocity cannot be modified by assignment and pressure extrapolation is
not specified via the new
"fixedFluxExtrapolatedPressureFvPatchScalarField".
The new function "constrainPressure" sets the pressure gradient
appropriately for "fixedFluxPressureFvPatchScalarField" and
"fixedFluxExtrapolatedPressureFvPatchScalarField" boundary conditions to
ensure the evaluated flux corresponds to the known velocity values at
the boundary.
The "fixedFluxPressureFvPatchScalarField" boundary condition operates
exactly as before, ensuring the correct flux at fixed-flux boundaries by
compensating for the body forces (gravity in particular) with the
pressure gradient.
The new "fixedFluxExtrapolatedPressureFvPatchScalarField" boundary
condition may be used for cases with or without body-forces to set the
pressure gradient to compensate not only for the body-force but also the
extrapolated "HbyA" which provides a second-order boundary condition for
pressure. This is useful for a range a problems including impinging
flow, extrapolated inlet conditions with body-forces or for highly
viscous flows, pressure-induced separation etc. To test this boundary
condition at walls in the motorBike tutorial case set
lowerWall
{
type fixedFluxExtrapolatedPressure;
}
motorBikeGroup
{
type fixedFluxExtrapolatedPressure;
}
Currently the new extrapolated pressure boundary condition is supported
for all incompressible and sub-sonic compressible solvers except those
providing implicit and tensorial porosity support. The approach will be
extended to cover these solvers and options in the future.
Note: the extrapolated pressure boundary condition is experimental and
requires further testing to assess the range of applicability,
stability, accuracy etc.
Henry G. Weller
CFD Direct Ltd.