- eliminate iterators from PackedList since they were unused, had
lower performance than direct access and added unneeded complexity.
- eliminate auto-vivify for the PackedList '[] operator.
The set() method provides any required auto-vivification and
removing this ability from the '[]' operator allows for a lower
when accessing the values. Replaced the previous cascade of iterators
with simpler reference class.
PackedBoolList:
- (temporarily) eliminate logic and addition operators since
these contained partially unclear semantics.
- the new test() method tests the value of a single bit position and
returns a bool without any ambiguity caused by the return type
(like the get() method), nor the const/non-const access (like
operator[] has). The name corresponds to what std::bitset uses.
- more consistent use of PackedBoolList test(), set(), unset() methods
for fewer operation and clearer code. Eg,
if (list.test(index)) ... | if (list[index]) ...
if (!list.test(index)) ... | if (list[index] == 0u) ...
list.set(index); | list[index] = 1u;
list.unset(index); | list[index] = 0u;
- deleted the operator=(const labelUList&) and replaced with a setMany()
method for more clarity about the intended operation and to avoid any
potential inadvertent behaviour.
- The bitSet class replaces the old PackedBoolList class.
The redesign provides better block-wise access and reduced method
calls. This helps both in cases where the bitSet may be relatively
sparse, and in cases where advantage of contiguous operations can be
made. This makes it easier to work with a bitSet as top-level object.
In addition to the previously available count() method to determine
if a bitSet is being used, now have simpler queries:
- all() - true if all bits in the addressable range are empty
- any() - true if any bits are set at all.
- none() - true if no bits are set.
These are faster than count() and allow early termination.
The new test() method tests the value of a single bit position and
returns a bool without any ambiguity caused by the return type
(like the get() method), nor the const/non-const access (like
operator[] has). The name corresponds to what std::bitset uses.
The new find_first(), find_last(), find_next() methods provide a faster
means of searching for bits that are set.
This can be especially useful when using a bitSet to control an
conditional:
OLD (with macro):
forAll(selected, celli)
{
if (selected[celli])
{
sumVol += mesh_.cellVolumes()[celli];
}
}
NEW (with const_iterator):
for (const label celli : selected)
{
sumVol += mesh_.cellVolumes()[celli];
}
or manually
for
(
label celli = selected.find_first();
celli != -1;
celli = selected.find_next()
)
{
sumVol += mesh_.cellVolumes()[celli];
}
- When marking up contiguous parts of a bitset, an interval can be
represented more efficiently as a labelRange of start/size.
For example,
OLD:
if (isA<processorPolyPatch>(pp))
{
forAll(pp, i)
{
ignoreFaces.set(i);
}
}
NEW:
if (isA<processorPolyPatch>(pp))
{
ignoreFaces.set(pp.range());
}
This class is largely a pre-C++11 holdover. It is now possible to
simply use move construct/assignment directly.
In a few rare cases (eg, polyMesh::resetPrimitives) it has been
replaced by an autoPtr.
Improve alignment of its behaviour with std::unique_ptr
- element_type typedef
- release() method - identical to ptr() method
- get() method to get the pointer without checking and without releasing it.
- operator*() for dereferencing
Method name changes
- renamed rawPtr() to get()
- renamed rawRef() to ref(), removed unused const version.
Removed methods/operators
- assignment from a raw pointer was deleted (was rarely used).
Can be convenient, but uncontrolled and potentially unsafe.
Do allow assignment from a literal nullptr though, since this
can never leak (and also corresponds to the unique_ptr API).
Additional methods
- clone() method: forwards to the clone() method of the underlying
data object with argument forwarding.
- reset(autoPtr&&) as an alternative to operator=(autoPtr&&)
STYLE: avoid implicit conversion from autoPtr to object type in many places
- existing implementation has the following:
operator const T&() const { return operator*(); }
which means that the following code works:
autoPtr<mapPolyMesh> map = ...;
updateMesh(*map); // OK: explicit dereferencing
updateMesh(map()); // OK: explicit dereferencing
updateMesh(map); // OK: implicit dereferencing
for clarity it may preferable to avoid the implicit dereferencing
- prefer operator* to operator() when deferenced a return value
so it is clearer that a pointer is involve and not a function call
etc Eg, return *meshPtr_; vs. return meshPtr_();
- relocated ListAppendEqOp and ListUniqueEqOp to ListOps::appendEqOp
and ListOps::UniqueEqOp, respectively for better code isolation and
documentation of purpose.
- relocated setValues to ListOps::setValue() with many more
alternative selectors possible
- relocated createWithValues to ListOps::createWithValue
for better code isolation. The default initialization value is itself
now a default parameter, which allow for less typing.
Negative indices in the locations to set are now silently ignored,
which makes it possible to use an oldToNew mapping that includes
negative indices.
- additional ListOps::createWithValue taking a single position to set,
available both in copy assign and move assign versions.
Since a negative index is ignored, it is possible to combine with
the output of List::find() etc.
STYLE: changes for PackedList
- code simplication in the PackedList iterators, including dropping
the unused operator() on iterators, which is not available in plain
list versions either.
- improved sizing for PackedBoolList creation from a labelUList.
ENH: additional List constructors, for handling single element list.
- can assist in reducing constructor ambiguity, but can also helps
memory optimization when creating a single element list.
For example,
labelListList labels(one(), identity(mesh.nFaces()));
- Eg instead of using labelHashSet, used HashSet<label> which uses
the string::hash for hashing. Other places inadvertently using the
string::hash instead of Hash<label> for hashing.
STYLE: use Map<..> instead of HashTable<.., label, Hash<label>>
- reduces clutter
- add copy construct from UList
- remove copy construct from dissimilar types.
This templated constructor was too generous in what it accepted.
For the special cases where a copy constructor is required with
a change in the data type, now use the createList factory method,
which accepts a unary operator. Eg,
auto scalars = scalarList::createList
(
labels,
[](const label& val){ return 1.5*val; }
);
- use succincter method names that more closely resemble dictionary
and HashTable method names. This improves method name consistency
between classes and also requires less typing effort:
args.found(optName) vs. args.optionFound(optName)
args.readIfPresent(..) vs. args.optionReadIfPresent(..)
...
args.opt<scalar>(optName) vs. args.optionRead<scalar>(optName)
args.read<scalar>(index) vs. args.argRead<scalar>(index)
- the older method names forms have been retained for code compatibility,
but are now deprecated
- avoid meshModifier contents from being read immediately upon
construction, since this recreates an existing modifier instead of
allowing us to specify our own.
- improve functional compatibility with DynList (remove methods)
* eg, remove an element from any position in a DynamicList
* reduce the number of template parameters
* remove/subset regions of DynamicList
- propagate Swap template specializations for lists, hashtables
- move construct/assignment to various containers.
- add find/found methods for FixedList and UList for a more succinct
(and clearer?) usage than the equivalent global findIndex() function.
- simplify List_FOR_ALL loops
Previously:
- bad command-line input such as -label 1234xyz would parse as a
label (with value 1234) and the trailing junk would be silently
ignored. This may or may not be appropriate. If the trailing junk
looked like this '100E' or '1000E-' (ie, forgot to type the
exponent), the incorrectly parsed values can be quite bad:
label = 32684
scalar = 6.93556e-310
Now:
- use the updated readLabel/readScalar routines that trigger a
FatalIOError on bad input:
--> FOAM FATAL IO ERROR:
Trailing content found parsing '1234xyz'
--> FOAM FATAL IO ERROR:
Trailing content found parsing '100E'
This traps erroneous command-line input immediately.
ENH: foamyHexMesh: Made default region volume type that of it's parent
Foamy surface conformation entries have a "meshableSide" entry which
controls which side of the surface is to be meshed. Typically this is
set "inside" for boundaries and "both" for baffles. A sub-region's
default entry is now taken from it's parent, rather than a specific
value (it was "inside"). This is consistent with how other entries are
handled.
surfaceConformation
{
locationInMesh (0 0 0);
geometryToConformTo
{
baffle
{
featureMethod extractFeatures;
includedAngle 120;
meshableSide both; // <-- per-surface setting
regions
{
disk
{
meshableSide both; // <-- per-region setting*
// *in this example, this entry is not needed, as it
// is taken from the per-surface setting above
}
}
}
// ...
}
}
ENH: foamyHexMesh: Added (reinstated) baffle patches
A patch can now be assigned to a baffle surface. This assignment will
take precedence over any face-zones.
surfaceConformation
{
locationInMesh (0 0 0);
geometryToConformTo
{
disk
{
featureMethod extractFeatures;
includedAngle 120;
meshableSide both; // <-- baffle
patchInfo
{
type wall;
inGroups (walls);
}
}
// ...
}
}
STYLE: foamyHexMesh: Switched off output of all the secondary meshes