- pattern as per surfaceFieldValue::setFaceZoneFaces()
1. define faceId, facePatchId assuming an internal face
2. if actually a boundary face:
- get facePatchId
- ignore if emptyPolyPatch or coupledPolyPatch (neighbour side)
- get patch relative faceId
This currently seems to be the least amount of code clutter.
ENH: recover some memory my shrinking lists in fluxSummary
BUG: potentially trailing rubbish in the heatExchangerModel lists
- the final resize to length actually used was missing.
Does not affect any released versions
phaseSystemModels function objects are relocated within
functionObjects in order to enable broader usage.
ENH: multiphaseInterHtcModel: new heatTransferCoeff function object model
COMP: createExternalCoupledPatchGeometry: add new dependencies
COMP: alphaContactAngle: avoid duplicate entries between multiphaseEuler and reactingEuler
TUT: damBreak4Phase: rename alphaContactAngle as multiphaseEuler::alphaContactAngle
DOC: heatTransferCoeff models: complete remaining header docs
STYLE: heatTransferCoeff models: use auto specifier when appropriate
Optionally, the Nusselt number (i.e. the ratio of convective to conductive
heat transfer at a boundary in a fluid) can be output:
```math
Nu = \frac{h L}{\kappa}
```
where
```
Nu | Nusselt number
h | Convective heat transfer coefficient of the flow
L | Characteristic length that defines the scale of the physical system
\kappa | Thermal conductivity of the fluid
```
ENH: update libs of etc/caseDicts/postProcess items
ENH: ensure destructor=default
ENH: ensure constness
ENH: ensure no 'copy construct' and 'no copy assignment' exist
TUT: add examples of function objects with full set
of settings into a TUT if unavailable
TUT: update pisoFoam/RAS/cavity tutorial in terms of usage
The phase systems tables for multiphase solvers create conflict
between each other as they are defined in the same namespace and using
similar class names.
Therefore a special htc function object for reactingEulerSolver was
added (reactingEulerHtcModel), located under
src/phaseSystemModels/reactingEulerFoam/functionObjects/
This commit includes the following:
- Relocate solvers/reactingEulerFoam functionObjects to
src/phaseSystemModels
- Remove links for fieldFunctionObject to multiphase libs to avoid
conflicts
- New FO for htc for reactingEulerFoam called reactingEulerHtcModel
- makes the intent clearer and avoids the need for additional
constructor casting. Eg,
labelList(10, Zero) vs. labelList(10, 0)
scalarField(10, Zero) vs. scalarField(10, scalar(0))
vectorField(10, Zero) vs. vectorField(10, vector::zero)
- deprecate dimensionedType constructors using an Istream in favour of
versions accepting a keyword and a dictionary.
Dictionary entries are almost the exclusive means of read
constructing a dimensionedType. By construct from the dictionary
entry instead of doing a lookup() first, we can detect possible
input errors such as too many tokens as a result of a input syntax
error.
Constructing a dimensionedType from a dictionary entry now has
two forms.
1. dimensionedType(key, dims, dict);
This is the constructor that will normally be used.
It accepts entries with optional leading names and/or
dimensions. If the entry contains dimensions, they are
verified against the expected dimensions and an IOError is
raised if they do not correspond. On conclusion, checks the
token stream for any trailing rubbish.
2. dimensionedType(key, dict);
This constructor is used less frequently.
Similar to the previous description, except that it is initially
dimensionless. If entry contains dimensions, they are used
without further verification. The constructor also includes a
token stream check.
This constructor is useful when the dimensions are entirely
defined from the dictionary input, but also when handling
transition code where the input dimensions are not obvious from
the source.
This constructor can also be handy when obtaining values from
a dictionary without needing to worry about the input dimensions.
For example,
Info<< "rho: " << dimensionedScalar("rho", dict).value() << nl;
This will accept a large range of inputs without hassle.
ENH: consistent handling of dimensionedType for inputs (#1083)
BUG: incorrect Omega dimensions (fixes#2084)
- both autoPtr and tmp are defined with an implicit construct from
nullptr (but with explicit construct from a pointer to null).
Thus is it safe to use 'nullptr' when returning an empty autoPtr or tmp.
- when constructing dimensioned fields that are to be zero-initialized,
it is preferrable to use a form such as
dimensionedScalar(dims, Zero)
dimensionedVector(dims, Zero)
rather than
dimensionedScalar("0", dims, 0)
dimensionedVector("zero", dims, vector::zero)
This reduces clutter and also avoids any suggestion that the name of
the dimensioned quantity has any influence on the field's name.
An even shorter version is possible. Eg,
dimensionedScalar(dims)
but reduces the clarity of meaning.
- NB: UniformDimensionedField is an exception to these style changes
since it does use the name of the dimensioned type (instead of the
regIOobject).
Improve alignment of its behaviour with std::shared_ptr
- element_type typedef
- swap, reset methods
* additional reference access methods:
cref()
returns a const reference, synonymous with operator().
This provides a more verbose alternative to using the '()' operator
when that is desired.
Mnemonic: a const form of 'ref()'
constCast()
returns a non-const reference, regardless if the underlying object
itself is a managed pointer or a const object.
This is similar to ref(), but more permissive.
Mnemonic: const_cast<>
Using the constCast() method greatly reduces the amount of typing
and reading. And since the data type is already defined via the tmp
template parameter, the type deduction is automatically known.
Previously,
const tmp<volScalarField>& tfld;
const_cast<volScalarField&>(tfld()).rename("name");
volScalarField& fld = const_cast<volScalarField&>(tfld());
Now,
tfld.constCast().rename("name");
auto& fld = tfld.constCast();
--
BUG: attempts to move tmp value that may still be shared.
- old code simply checked isTmp() to decide if the contents could be
transfered. However, this means that the content of a shared tmp
would be removed, leaving other instances without content.
* movable() method checks that for a non-null temporary that is
unique (not shared).
Computes the heat transfer coefficient [W/m2/K] using a run-time
selectable model:
- ReynoldsAnalogy
- fixedReferenceTemperature
- localReferenceTemperature