- this compact form shows the subscription per host in the unsorted
mpi order
nProcs : 18
Hosts :
(
(node1 6)
(node2 8)
(node3 4)
)
This provides a succinct overview of which hosts have been
subscribed or oversubscribed.
- The longer list of "slave.pid" ... remains available on the
InfoSwitch 'writeHosts'
old "positions" file form
The change to barycentric-based tracking changed the contents of the
cloud "positions" file to a new format comprising the barycentric
co-ordinates and other cell position-based info. This broke
backwards compatibility, providing no option to restart old cases
(v1706 and earlier), and caused difficulties for dependent code, e.g.
for post-processing utilities that could only infer the contents only
after reading.
The barycentric position info is now written to a file called
"coordinates" with provision to restart old cases for which only the
"positions" file is available. Related utilities, e.g. for parallel
running and data conversion have been updated to be able to support both
file types.
To write the "positions" file by default, use set the following option
in the InfoSwitches section of the controlDict:
writeLagrangianPositions 1;
"pos" now returns 1 if the argument is greater than 0, otherwise it returns 0.
This is consistent with the common mathematical definition of the "pos" function:
https://en.wikipedia.org/wiki/Sign_(mathematics)
However the previous implementation in which 1 was also returned for a 0
argument is useful in many situations so the "pos0" has been added which returns
1 if the argument is greater or equal to 0. Additionally the "neg0" has been
added which returns 1 if if the argument is less than or equal to 0.
Original commit message:
------------------------
Parallel IO: New collated file format
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor. Processor directories are named 'processorN',
where N is the processor number.
This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor. The files are stored in a single
directory named 'processors'.
The new format produces significantly fewer files - one per field, instead of N
per field. For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.
The file writing can be threaded allowing the simulation to continue running
while the data is being written to file. NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".
The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:
OptimisationSwitches
{
...
//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;
//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;
//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;
}
When using the collated file handling, memory is allocated for the data in the
thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated. If the data exceeds this size, the write does not use threading.
When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the
data exceeds this size, the system uses scheduled communication.
The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters. Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.
A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated
An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling
The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
terms of the local barycentric coordinates of the current tetrahedron,
rather than the global coordinate system.
Barycentric tracking works on any mesh, irrespective of mesh quality.
Particles do not get "lost", and tracking does not require ad-hoc
"corrections" or "rescues" to function robustly, because the calculation
of particle-face intersections is unambiguous and reproducible, even at
small angles of incidence.
Each particle position is defined by topology (i.e. the decomposed tet
cell it is in) and geometry (i.e. where it is in the cell). No search
operations are needed on restart or reconstruct, unlike when particle
positions are stored in the global coordinate system.
The particle positions file now contains particles' local coordinates
and topology, rather than the global coordinates and cell. This change
to the output format is not backwards compatible. Existing cases with
Lagrangian data will not restart, but they will still run from time
zero without any modification. This change was necessary in order to
guarantee that the loaded particle is valid, and therefore
fundamentally prevent "loss" and "search-failure" type bugs (e.g.,
2517, 2442, 2286, 1836, 1461, 1341, 1097).
The tracking functions have also been converted to function in terms
of displacement, rather than end position. This helps remove floating
point error issues, particularly towards the end of a tracking step.
Wall bounded streamlines have been removed. The implementation proved
incompatible with the new tracking algorithm. ParaView has a surface
LIC plugin which provides equivalent, or better, functionality.
Additionally, bug report <https://bugs.openfoam.org/view.php?id=2517>
is resolved by this change.
- this reduces the number of functions and allows lazy loading of
completion options, which makes it easy to quickly add any other
OpenFOAM application in completion.
The generic '_of_complete_' function handles (bash) completion for
any OpenFOAM application. On the first call for any particular
application, it retrieves the available options from the application
help output and adds this information to its environmental cache for
subsequent use.
- Tcsh completion uses the same function via a bash wrapper.
But since its wrapper is transient, the on-the-fly generation would
be less efficient. For this case, a pre-generated completion_cache
can be used, which is generated with
bin/tools/foamCreateCompletionCache
- handles the case where we are currently completing something that
does not appear to be an option. For example,
foamDictionary -expanded someD[TAB]
should complete the filename, not present more options.
- although this has been supported for many years, the tutorials
continued to use "convertToMeters" entry, which is specific to blockMesh.
The "scale" is more consistent with other dictionaries.
ENH:
- ignore "scale 0;" (treat as no scaling) for blockMeshDict,
consistent with use elsewhere.
- currently no cleanup of completions when deactivating an OpenFOAM
tcsh environment
- tab completion with directories adds a space after the slash, which
makes navigation a bit annoying.
- use complete -o filenames, dropped -o nospace to make it more responsive.
- restructure completion code to use a unified backend, which makes it easier
understand, maintain and re-use.
- foamCreateBashCompletions now simply outputs to a stdout, and allows
quick generation of completion of single applications.
- add -fileHandler completion in anticipation of future changes there.
- relocated as etc/config.s/bash_completion to prevent inadvertently
having two versions (.com, .org) installed at the same time.
- added an explicit print, but only report profiling to the log
file from master process.
We don't wish to overwrite any profiling that was conducted during
the simulation. Besides which, we don't have a proper Time object
for handling the write nicely either.
- add note in BuildIssues about the I_MPI_CC variable, which is needed
when building with Intel-MPI and gcc/clang.
This additional setting is needed since the changes needed to solve
the issue of building scotch with Intel-MPI and icc (issue #434)
means that mpiicc is now being used as the wrapper when compiling
scotch.
- have the FOAM_MPI short name for INTELMPI start with 'impi-' instead
of just the version number.
Intel-MPI is often installed as /opt/intel/impi/4.1.3.049, which
results in 'FOAM_MPI=4.1.3.049' and the mpi flavour is lost.
Prefix these cases with 'impi-'
- allows configuration without an environment variable.
For compatibility still respect FOAM_SIGFPE and FOAM_SETNAN
env-variables
- The env-variables are now treated as true/false switch values.
Previously there was just a check for env exists or not, but this
can be fairly fragile for a user's environment.
Adds overset discretisation to selected physics:
- diffusion : overLaplacianDyMFoam
- incompressible steady : overSimpleFoam
- incompressible transient : overPimpleDyMFoam
- compressible transient: overRhoPimpleDyMFoam
- two-phase VOF: overInterDyMFoam
The overset method chosen is a parallel, fully implicit implementation
whereby the interpolation (from donor to acceptor) is inserted as an
adapted discretisation on the donor cells, such that the resulting matrix
can be solved using the standard linear solvers.
Above solvers come with a set of tutorials, showing how to create and set-up
simple simulations from scratch.