- with alternative faceCell addressing, use the three-parameter
version only. This avoids potential future ambiguity with the
two-parameter version (eg, with a label type)
ENH: add faPatchField patchInternalField() for symmetry with fvPatchField
ENH: direct reference to mesh thisDb instead of inferring
ENH: pointMesh::boundaryMesh() method (eg, similar to fvMesh)
- reduces clutter. In some cases the Fwd typedefs were also incorrect
STYLE: combine Scalar specialisations into corresponding PatchFields.C
- reduces clutter, simplifies future adjustments
- simplifies code, consistent with other matrix transfer functions.
Use a setter method.
STYLE: AMIInterpolation::upToDate(bool) setter method
ENH: add guards to avoid float-compressed transfer of integral types
STYLE: drop unused debug member from abstract interface classes
- now simply a no-op for out-of-range values (instead of an error),
which simplifies the calling code.
Previously
==========
if (request_ >= 0 && request_ < UPstream::nRequests())
{
UPstream::waitRequest(request_);
}
Updated
=======
UPstream::waitRequest(request_);
- when 'recycling' freed request indices, ensure they are actually
within the currently addressable range
- MPI finalization now checks outstanding requests against
MPI_REQUEST_NULL to verify that they have been waited or tested on.
Previously simply checked against freed request indices
ENH: consistent initialisation of send/receive bookkeeping
- use default initialize boundBox instead of invertedBox
- reset() instead of assigning from invertedBox
- extend (three parameter version) and grow method
- inflate(Random) instead of extend + re-assigning
- null() static method
* as const reference to the invertedBox with the appropriate casting.
- boundBox inflate(random)
* refactored from treeBoundBox::extend, but allows in-place modification
- boundBox::hexFaces() instead of boundBox::faces
* rarely used, but avoids confusion with treeBoundBox::faces
and reuses hexCell face definitions without code duplication
- boundBox::hexCorners() for corner points corresponding to a hexCell.
Can also be accessed from a treeBoundBox without ambiguity with
points(), which could be hex corners (boundBox) or octant corners
(treeBoundBox)
- boundBox::add with pairs of points
* convenient (for example) when adding edges or a 'box' that has
been extracted from a primitive mesh shape.
- declare boundBox nPoints(), nFaces(), nEdges() as per hexCell
ENH: return invertedBox instead of FatalError for empty trees
- similar to #2612
ENH: cellShape(HEX, ...) + boundBox hexCorners for block meshes
STYLE: cellModel::ref(...) instead of de-reference cellModel::ptr(...)
ENH: use DynamicList instead of List + size for point wave
- consistent with previous updates for the other algorithms
STYLE: unique_ptr instead of raw pointer in wave algorithms
STYLE: combine templated/non-templated headers (reduced clutter)
STYLE: use hitPoint(const point&) combined setter
- same as setHit() + setPoint(const point&)
ENH: expose and use labelOctBits::pack method for addressing
- stem(), replace_name(), replace_ext(), remove_ext() etc
- string::contains() method - similar to C++23 method
Eg,
if (keyword.contains('/')) ...
vs
if (keyword.find('/') != std::string::npos) ...
- in continuation of #2565 (rotationCentre for surface output formats)
it is helpful to also support READ_IF_PRESENT behaviour for the
'origin' keyword.
This can be safely used wherever the coordinate system definition
is embedded within a sub-dictionary scope.
Eg,
dict1
{
coordinateSystem
{
origin (0 0 0); // now optional here
rotation ...;
}
}
but remains mandatory if constructed without a sub-dict:
dict2
{
origin (0 0 0); // still mandatory
e1 (1 0 0);
e3 (0 0 1);
}
With this change, the "transform" sub-dictionary can written
more naturally:
formatOptions
{
vtk
{
scale 1000; // m -> mm
transform
{
rotationCentre (1 0 0);
rotation axisAngle;
axis (0 0 1);
angle -45;
}
}
}
ENH: simplify handling of "coordinateSystem" dictionary lookups
- coordinateSystems::NewIfPresent method for optional entries:
coordSysPtr_ = coordinateSystem::NewIfPresent(mesh, dict);
Instead of
if (dict.found(coordinateSystem::typeName, keyType::LITERAL))
{
coordSysPtr_ =
coordinateSystem::New
(
mesh_,
dict,
coordinateSystem::typeName
);
}
else
{
coordSysPtr_.reset();
}
ENH: more consistent handling of priorities for binModels, forces (#2598)
- if the dictionaries are overspecified, give a 'coordinateSystem'
entry a higher prioriy than the 'CofR' shortcuts.
Was previously slightly inconsistent between the different models.
- previously had 'mandatory' (bool) for advanced control of reading
dictionary entries but its meaning was unclear in the calling code
without extra code comments.
Now use IOobjectOption::readOption instead, which allows further
options (ie, NO_READ) and is more transparent as to its purpose in
the code than a true/false bool flag was.
This is a minor breaking change (infrequent, advanced usage only)
- minor code cleanup in dictionary lookup methods
- read construct from dictionary.
Calling syntax similar to dimensionedType, dimensionedSet,...
Replaces the older getEntry(), getOptional() static methods
- support readIfPresent
- in expressions BCs in particular, there is various logic handling
for if value/refValue/refGradient etc are found or not.
Handle the lookups as findEntry and branch to use Field assign
or other handling, depending on its existence.
STYLE: use wordList instead of wordRes for copy/filter dictionary
- noexcept on some Time methods
ENH: pass through is_oriented() method for clearer coding
- use logical and/or/xor instead of bitwise versions (clearer intent)
- commonly used calculations
ENH: add faPatch::patchRawSlice method
- slices using the nEdges() instead of the virtual size(),
which provides similar functionality as finite-volume has with
its distinction between polyPatch vs fvPatch patchSlice
- use patchInternal for obtaining faPatch, fvPatch information
- similar to boundaryFieldRef(), primitiveFieldRef() for providing
write access. Complimentary naming to internalField(). Identical to
ref() but more explicitly named, and less likely to be confused with
a tmp::ref(), for example.
- prefer .primitiveFieldRef() over .ref().field()
- mark some access methods noexcept
- list of faces() was using mesh-faces, not area-faces
ENH: provision for patch and faceSet selection in fa::faceSetOption
- adjust most of the faOptions to respect subset of faces
ENH: support Function1 for externalHeatFluxSource
BUG: incorrect handling of fixedPower (externalHeatFluxSource)
- used local areas instead of global total area
- whichPatchFace() returns the (patchi, patchFacei) tuple,
whichPatch() simply wraps whichPatchFace()
- groupNames() : similar to zones
ENH: simplify calls to faPatch/fvPatch patchField, lookupPatchField
- make second (ununsed) template parameter optional.
Was previously needed for old compilers (2008 and earlier).
- simplifies construction/inheritance
ENH: add {fa,fv}PatchField::zeroGradientType() static
- can be used to avoid literal "zeroGradient" in places
STYLE: adjust naming of pointPatch runtime selection table
- simply use 'patch' as per fa/fv fields
STYLE: add zero-size guard to patch constraintType(const word&)
For example, instead of
if (dict.found("value"))
{
fvScalarField::operator=
(
Field<scalar>("value", dict, p.size())
);
}
can use more precise specifications, and also eliminate searching
the dictionary multiple times:
const auto* eptr = dict.findEntry("value", keyType::LITERAL);
//or: dict.findCompat("value", {{"oldName" ... }}, keyType::LITERAL);
if (eptr)
{
fvScalarField::assign(*eptr, p.size());
}
STYLE: combine declaration of FieldBase into Field.H
- clearer coding intent. Mark operator() as 'deprecated'
- add bounds checking to get(label) and set(label) methods.
This gives failsafe behaviour for get() that is symmetric with
HashPtrTable, autoPtr etc and aligns the set(label) methods
for UPtrList, PtrList and PtrDynList.
- use top-level PtrList::clone() instead of cloning individual elements
ENH: support HashPtrTable set with refPtr/tmp (flexibility)
- simplifies coding
* finishedRequest(), waitRequest(), waitRequests() with parRun guards
* nRequests() is noexcept
- more consistent use of UPstream::defaultCommsType in branching
- align timeVaryingMappedFixedValuePointPatchField keywords with
MappedFile
STYLE: minor cleanup of pointToPointPlanarInterpolation
BUG: incorrect keyword for timeVaryingMappedFixedValuePointPatchField
- lookup should be "fieldTable" (not "fieldTableName") for consistency
with the output and other BCs. (Bug introduced by a623ab42a3)
In movePoints had some duplicated code but did not update the
lower level (polyPatch) areas. This caused scaling to be applied
multiple times (so only 1.0 would not be affected)
This is on
- incompressible/pimpleFoam/laminar/mixerVesselAMI2D/mixerVesselAMI2D-topologyChange
- redistributePar -reconstruct
where the fvMesh::updateMesh does an early trigger of
mesh.phi() calculation