Commit Graph

29 Commits

Author SHA1 Message Date
9231534efa STYLE: Updating version to v1812 2018-12-19 18:07:52 +00:00
db8ba80ae4 TUT: update old keywords 2018-12-14 11:20:31 +01:00
6e35bcda70 ENH: Updated config for release v1806 2018-06-28 12:56:00 +01:00
fe140cd6c5 TUT: test mode not respected (closes #710)
- now replaced 'if ! isTest' with 'if notTest' for most cases.
2018-02-20 12:54:44 +01:00
e3c4696a6e TUT: Updated Allrun scripts for tests. Fixes #710 2018-01-17 15:30:49 +00:00
a9ffcab5af ENH: region-wise decomposition specification for decomposeParDict
Within decomposeParDict, it is now possible to specify a different
  decomposition method, methods coefficients or number of subdomains
  for each region individually.

  The top-level numberOfSubdomains remains mandatory, since this
  specifies the number of domains for the entire simulation.
  The individual regions may use the same number or fewer domains.

  Any optional method coefficients can be specified in a general
  "coeffs" entry or a method-specific one, eg "metisCoeffs".

  For multiLevel, only the method-specific "multiLevelCoeffs" dictionary
  is used, and is also mandatory.

----

ENH: shortcut specification for multiLevel.

  In addition to the longer dictionary form, it is also possible to
  use a shorter notation for multiLevel decomposition when the same
  decomposition method applies to each level.
2017-11-09 12:30:24 +01:00
c792a9d7df TUT: script cleanup, provide cleanCase0 for commonly used operation 2017-10-12 19:20:56 +02:00
c2a0663cc7 TUT: use general 'scale' instead of 'convertToMeters' in blockMeshDict
- although this has been supported for many years, the tutorials
  continued to use "convertToMeters" entry, which is specific to blockMesh.
  The "scale" is more consistent with other dictionaries.

ENH:
- ignore "scale 0;" (treat as no scaling) for blockMeshDict,
  consistent with use elsewhere.
2017-08-03 06:38:30 +02:00
aefb739584 STYLE: fix permissions on files, remove unused files 2017-07-03 12:15:41 +02:00
bd803d80c6 TUT: Removed unused nMoles entries 2017-06-27 15:51:34 +01:00
45381b1085 MRG: Integrated Foundation code to commit 19e602b 2017-03-28 11:30:10 +01:00
dcb1a95e35 MRG: Integrated Foundation code to commit 7d6845d 2017-03-23 14:33:33 +00:00
50516486a4 rhoPimpleFoam: Added support for transonic flow of liquids and real gases
Both stardard SIMPLE and the SIMPLEC (using the 'consistent' option in
fvSolution) are now supported for both subsonic and transonic flow of all
fluid types.

rhoPimpleFoam now instantiates the lower-level fluidThermo which instantiates
either a psiThermo or rhoThermo according to the 'type' specification in
thermophysicalProperties, see also commit a1c8cde310
2017-02-28 11:14:59 +00:00
c52e4b58a1 thermophysicalModels: Changed specie thermodynamics from mole to mass basis
The fundamental properties provided by the specie class hierarchy were
mole-based, i.e. provide the properties per mole whereas the fundamental
properties provided by the liquidProperties and solidProperties classes are
mass-based, i.e. per unit mass.  This inconsistency made it impossible to
instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV
transport solvers on liquidProperties.  In order to combine VoF with film and/or
Lagrangian models it is essential that the physical propertied of the three
representations of the liquid are consistent which means that it is necessary to
instantiate the thermodynamics packages on liquidProperties.  This requires
either liquidProperties to be rewritten mole-based or the specie classes to be
rewritten mass-based.  Given that most of OpenFOAM solvers operate
mass-based (solve for mass-fractions and provide mass-fractions to sub-models it
is more consistent and efficient if the low-level thermodynamics is also
mass-based.

This commit includes all of the changes necessary for all of the thermodynamics
in OpenFOAM to operate mass-based and supports the instantiation of
thermodynamics packages on liquidProperties.

Note that most users, developers and contributors to OpenFOAM will not notice
any difference in the operation of the code except that the confusing

    nMoles     1;

entries in the thermophysicalProperties files are no longer needed or used and
have been removed in this commet.  The only substantial change to the internals
is that species thermodynamics are now "mixed" with mass rather than mole
fractions.  This is more convenient except for defining reaction equilibrium
thermodynamics for which the molar rather than mass composition is usually know.
The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and
equilibriumFlameT utilities in which the species thermodynamics are
pre-multiplied by their molecular mass to effectively convert them to mole-basis
to simplify the definition of the reaction equilibrium thermodynamics, e.g. in
equilibriumCO

    // Reactants (mole-based)
    thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W();

    // Oxidant (mole-based)
    thermo O2(thermoData.subDict("O2")); O2 *= O2.W();
    thermo N2(thermoData.subDict("N2")); N2 *= N2.W();

    // Intermediates (mole-based)
    thermo H2(thermoData.subDict("H2")); H2 *= H2.W();

    // Products (mole-based)
    thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W();
    thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W();
    thermo CO(thermoData.subDict("CO")); CO *= CO.W();

    // Product dissociation reactions

    thermo CO2BreakUp
    (
        CO2 == CO + 0.5*O2
    );

    thermo H2OBreakUp
    (
        H2O == H2 + 0.5*O2
    );

Please report any problems with this substantial but necessary rewrite of the
thermodynamic at https://bugs.openfoam.org

Henry G. Weller
CFD Direct Ltd.
2017-02-17 11:22:14 +00:00
28e37bbec9 STYLE: Consistency updates 2016-12-16 14:36:48 +00:00
a6a90838fa STYLE: adjust tutorial Allrun scripts (issue #310)
- A few without a 'cd' at the start.
  Use $(getApplication) directly in more places (for clarity).
2016-11-21 10:18:00 +01:00
21679c04e4 STYLE: adjust tutorial Allclean scripts (issue #310)
- A few without a 'cd' at the start.
  Several remove files that are already covered by the cleanCase function.
2016-11-20 17:26:44 +01:00
e98e372f8e ENH: Tutorial updates 2016-09-30 15:31:35 +01:00
bd0e982d99 MRG: Initial commit after latest Foundation merge 2016-09-30 11:16:28 +01:00
3dbd39146c STYLE: consistency updates 2016-09-27 15:17:55 +01:00
ad1e798293 ENH: Initial testing updates 2016-09-26 09:28:31 +01:00
9fbd612672 GIT: Initial state after latest Foundation merge 2016-09-20 14:49:08 +01:00
eb6cf446fc STYLE: wrong permissions on some tutorial files 2016-06-30 15:39:38 +02:00
da6820c300 ENH: Added Pawan's sineWaveDamping tutorial to test new acousticDamping fvOption 2016-06-30 12:48:50 +01:00
6d330d3d12 tutorials: Updated formatting of dictionaries and specification of 'plane' and 'samplePlane' 2016-06-29 18:02:57 +01:00
3eec5854be Standardized the selection of required and optional fields in BCs, fvOptions, functionObjects etc.
In most boundary conditions, fvOptions etc. required and optional fields
to be looked-up from the objectRegistry are selected by setting the
keyword corresponding to the standard field name in the BC etc. to the
appropriate name in the objectRegistry.  Usually a default is provided
with sets the field name to the keyword name, e.g. in the
totalPressureFvPatchScalarField the velocity is selected by setting the
keyword 'U' to the appropriate name which defaults to 'U':

        Property     | Description             | Required    | Default value
        U            | velocity field name     | no          | U
        phi          | flux field name         | no          | phi
        .
        .
        .

However, in some BCs and functionObjects and many fvOptions another
convention is used in which the field name keyword is appended by 'Name'
e.g.

        Property     | Description             | Required    | Default value
        pName        | pressure field name     | no          | p
        UName        | velocity field name     | no          | U

This difference in convention is unnecessary and confusing, hinders code
and dictionary reuse and complicates code maintenance.  In this commit
the appended 'Name' is removed from the field selection keywords
standardizing OpenFOAM on the first convention above.
2016-05-21 20:28:20 +01:00
83bae2efd3 functionObjects: Renamed dictionary entry 'functionObjectLibs' -> 'libs'
This changes simplifies the specification of functionObjects in
controlDict and is consistent with the 'libs' option in controlDict to
load special solver libraries.

Support for the old 'functionObjectLibs' name is supported for backward compatibility.
2016-05-16 22:09:01 +01:00
c983670c91 functionObjects: Changed options 'outputControl' -> 'writeControl' and 'outputInterval' -> 'writeInterval'
for consistency with the time controls in controlDict and to avoid
unnecessary confusion.  All code and tutorials have been updated.

The old names 'outputControl' and 'outputInterval' are but supported for
backward compatibility but deprecated.
2016-05-12 11:38:11 +01:00
88561eea95 plenumPressureFvPatchScalarField: New plenum pressure boundary condition
This condition creates a zero-dimensional model of an enclosed volume of
gas upstream of the inlet. The pressure that the boundary condition
exerts on the inlet boundary is dependent on the thermodynamic state of
the upstream volume.  The upstream plenum density and temperature are
time-stepped along with the rest of the simulation, and momentum is
neglected. The plenum is supplied with a user specified mass flow and
temperature.

The result is a boundary condition which blends between a pressure inlet
condition condition and a fixed mass flow. The smaller the plenum
volume, the quicker the pressure responds to a deviation from the supply
mass flow, and the closer the model approximates a fixed mass flow. As
the plenum size increases, the model becomes more similar to a specified
pressure.

The expansion from the plenum to the inlet boundary is controlled by an
area ratio and a discharge coefficient. The area ratio can be used to
represent further acceleration between a sub-grid blockage such as fins.
The discharge coefficient represents a fractional deviation from an
ideal expansion process.

This condition is useful for simulating unsteady internal flow problems
for which both a mass flow boundary is unrealistic, and a pressure
boundary is susceptible to flow reversal. It was developed for use in
simulating confined combustion.

tutorials/compressible/rhoPimpleFoam/laminar/helmholtzResonance:
    helmholtz resonance tutorial case for plenum pressure boundary

This development was contributed by Will Bainbridge
2016-04-23 13:43:49 +01:00