COMP: implicit cast scope name to C++-string in IOobject::scopedName
- handles 'const char*' and allows a check for an empty scope name
COMP: avoid potential name conflict in local function (Istream)
- reportedly some resolution issues (unconfirmed) with Fujitsu clang
Example using mean turbulence fields (mean fields should be available e.g. from
a fieldAverage function object)
proudmanAcousticPower1
{
// Mandatory entries (unmodifiable)
type proudmanAcousticPower;
libs (fieldFunctionObjects);
...
// Turbulence field names (if not retrieved from the turb model)
k kMean;
epsilon epsilonMean;
omega none; // omegaMean
}
Previously, for basic incompressible and compressible simulations,
the "force" function object has not been using the user-specified "UName"
for the "devRhoReff" computation (affecting the tangential component),
but using the "U" of the latest available step. In contrast,
the user-specified "pName" has always been being used correctly.
This has been causing issues for users when they wish to use a specific
"UMean" field in various force and forceCoeff function object computations.
1) Adding subMesh capabilities to momentumError and div FOs.
- A subMesh is created from cellZones.
- The operators (div, etc) are only calculated in the subMesh.
2) Optionally, halo cells can be added to the cellZones.
3) New helper class to handle the subMesh creation and field mapping.
- Added new faceAreaWeightAMI2D AMIMethod:
- performs intersection using a new 2D triangle class;
- candidate face matches set using an AABBTree method (vs advancing front for
faceAreaWeightAMI).
- Use by setting the AMIMethod entry when specifying the AMI in the
constant/polyMesh/boundary file, e.g.
AMI
{
type cyclicACMI;
AMIMethod faceAreaWeightAMI2D; // new method
Cbb 0.1; // optional coefficient
nFaces 1000;
startFace 100000;
matchTolerance 0.0001;
transform noOrdering;
neighbourPatch AMI1;
nonOverlapPatch AMI1_non_overlap;
}
- The optional Cbb coeffcient controls the size of the bounding box used when
looking for candidate pairs; the value of 0.1 is the default and worked well
for a large range of test cases. For badly matched AMI patches this may need
to be increased.
- Deprecated the partialFaceAreaWeightAMI class - primarily used by ACMI:
- functionality now offered by the AMI variants.
Wrapper that clones the supplied object for each region.
Simplifies the setup of identical post-processing requirements for
multi-region cases.
Applies the supplied function to all regions by default.
Example of function object specification:
multiRegion
{
type multiRegion;
libs (utilityFunctionObjects);
...
function
{
// Actual object specification
type fieldMinMax;
libs (fieldFunctionObjects);
fields (<field1> .. <fieldN>);
}
// Optional entries
regions (region1 region2);
}
Where the entries comprise:
Property | Description | Reqd | Default
type | Type name: multiRegion | yes |
function | Function object sub-dictionary | yes |
regions | List of region names | no | all
Computes a selected operation between multiple \c fieldValue function
objects.
The operation is applied to all results of each \c fieldValue object.
Note
Each object must generate the same number and type of results.
Usage
Minimal example by using \c system/controlDict.functions:
multiFieldValue1
{
// Mandatory entries (unmodifiable)
type multiFieldValue;
libs (fieldFunctionObjects);
// Mandatory entries (runtime modifiable)
operation subtract;
// List of fieldValue function objects as dictionaries
functions
{
region1
{
...
}
region2
{
...
}
...
regionN
{
...
}
}
// Optional (inherited) entries
...
}
where the entries mean:
Property | Description | Type | Req'd | Dflt
type | Type name: multiFieldValue | word | yes | -
libs | Library name: fieldFunctionObjects | word | yes | -
operation | Operation type to apply to values | word | yes | -
functions | List of fieldValue function objects | dict | yes | -
\endtable
Options for the \c operation entry:
add | add
subtract | subtract
min | minimum
max | maximum
average | average
Deprecated fieldValueDelta
- The fieldValueDelta function object was originally written to compute the
difference between two fieldValue-type function objects. The multiFieldValue
object name better describes its purpose whilst being able to operate on an
arbitrary number of fieldValue-type objects.
code style and quality improvements
renamed recon::centre to interfaceCentre.{groupName}
ranmed recon::normal to interfaceNormal.{groupName}
centre and normal field are not written by default
- in some cases, additional dictionary inputs are useful for extending
the input parameters or functionality of dynamic coded conditions.
Typically this can be used to provide a simple set of dictionary
inputs that are used to drive specific code, but allows changing the
inputs without causing a recompilation.
Accessed with this type of code:
```
const dictionary& dict = this->codeContext();
```
boundary conditions and function objects:
* specify an additional codeContext dictionary entry:
```
codeContext
{
...
}
```
PatchFunction1:
* The code context dictionary is simply the dictionary used to specify
the PatchFunction1 coefficients.
To replicated persistant data, use local member static data.
Eg,
```
code
#{
// Persistent (Member) Data
static autoPtr<Function1<scalar>> baseVel;
static autoPtr<Function1<vector>> baseDir;
...
#}
```
fvOptions:
* currently not applicable
- meshTools include/library for many (most) coded items
- add PatchFunction1 include for coded BCs to provide ready access
to Function1 and PatchFunction1
- depending on how the finiteArea is split up across processors,
it is possible that some processors have failed to register
fields in their object registry.
Now ensure that the field names are synchronized in parallel before
attempting a write. Replace locally missing fields with a dummy
zero-sized field.
Step 1.
include "addAllRegionOptions.H"
Adds the -allRegions, -regions and -region options to argList.
Step 2.
include "getAllRegionOptions.H"
Processes the options with -allRegions selecting everything
from the regionProperties.
OR use -regions to specify multiple regions (from
regionProperties), and can also contain regular expressions
OR use the -region option
Specifying a single -regions NAME (not a regular expresssion)
is the same as -region NAME and doesn't use regionProperties
Creates a `wordList regionNames`
Step 3.
Do something with the region names.
Either directly, or quite commonly with the following
include "createNamedMeshes.H"
Creates a `PtrList<fvMesh> meshes`
STYLE: add description to some central include files
- The keyType is primarily used within dictionary reading, whereas
wordRe and wordRes are used for selectors in code.
Unifying on wordRe and wordRes reduces the number matching options.
- wrap command-line retrieval of fileName with an implicit validate.
Instead of this:
fileName input(args[1]);
fileName other(args["someopt"]);
Now use this:
auto input = args.get<fileName>(1);
auto other = args.get<fileName>("someopt");
which adds a fileName::validate on the inputs
Because of how it is implemented, it will automatically also apply
to argList getOrDefault<fileName>, readIfPresent<fileName> etc.
- adjust fileName::validate and clean to handle backslash conversion.
This makes it easier to ensure that path names arising from MS-Windows
are consistently handled internally.
- dictionarySearch: now check for initial '/' directly instead of
relying on fileName isAbsolute(), which now does more things
BREAKING: remove fileName::clean() const method
- relying on const/non-const to control the behaviour (inplace change
or return a copy) is too fragile and the const version was
almost never used.
Replace:
fileName sanitized = constPath.clean();
With:
fileName sanitized(constPath);
sanitized.clean());
STYLE: test empty() instead of comparing with fileName::null
- originally had tests for regex meta characters strewn across
regExp classes as well as wordRe, keyType, string.
And had special-purpose quotemeta static function within string
that relied on special naming convention for testing the meta
characters.
The regex meta character testing/handling now relegated entirely
to the regExp class(es).
Relocate quotemeta to stringOps, with a predicate.
- avoid code duplication. Reuse some regExpCxx methods in regExpPosix
- useful when used in a batch process to trap the exit signal,
e.g. stop the run when the velocity magnitude exceeds a given
threshold:
runTimeControl
{
type runTimeControl;
libs ("libutilityFunctionObjects.so");
nWriteStep 1;
// Optional end 'action'
satisfiedAction abort; // end; // setTrigger
conditions
{
maxU
{
type minMax;
functionObject MinMax;
fields ("max(mag(U))");
value 1e6;
mode maximum;
}
}
}