- only occurs in combination with distributedTriSurfaceMesh in snappy.
- workaround similar to that previously used for surfaceRedistributePar
(issue #60).
Minor adjustment of incompressible motorBike tutorial to detect use of
distributedTriSurfaceMesh.
- relied on 'export' keyword, which was removed in commit b844867112
--
ENH: foamConfigurePaths support for additional items:
-label 32|64 specify label size
-system name specify 'system' compiler to be used
-thirdParty name specify 'ThirdParty' compiler to be used
-boost ver specify boost_version
-boostArchPath dir specify BOOST_ARCH_PATH
-cgal ver specify cgal_version
-cgalArchPath dir specify CGAL_ARCH_PATH
-clang ver specify clang_version for ThirdParty Clang
-cmake ver specify cmake_version
-fftw ver specify fffw_version
-fftwArchPath dir specify FFTW_ARCH_PATH
-metis ver specify METIS_VERSION
-metisArchPath dir specify METIS_ARCH_PATH
The best of the current options is to use the latest version of
exuberant ctags (which has a new C++ parser) to generate both
declaration and definition tags.
gtags works to some extent and provides additional information about the
function signatures but the C++ parser is not accurate and misses scope
information. gtags can be used with the ctags parser which is effective
but looses the primary advantage of gtags being able to provide function
signatures so support has been switched-off by default.
ebrowse does not appear to be very useful for traversing the OpenFOAM
class tree and the support has been switched-off by default.
- include cleanup of other postProcessing directories:
* Ensight, EnSight, ensightWrite
- don't need to remove files that cleanSnappyFiles already removed:
* 0/cellLevel 0/pointLevel
- bundle removal of constant/ items together:
* constant/cellDecomposition constant/polyMesh constant/tetDualMesh
- Can occur with some user names, or mounted paths.
Resolve by using '?' for the separation character.
Since '?' is a shell-glob, it is highly unlikely to occur appear in
filenames. Additionally, it is not a meta-character in standard sed,
nor in the GNU extension (which uses '\?').
Patch contributed by Bruno Santos
Resolves bug-report http://bugs.openfoam.org/view.php?id=2267
1. Spaced ending of multi-level template parameters are not allowed, such as:
List<List<scalar> >
which instead should be:
List<List<scalar>>
2. The use of the 'NULL' macro should be replaced by 'nullptr'
Provides efficient integration of complex laminar reaction chemistry,
combining the advantages of automatic dynamic specie and reaction
reduction with ISAT (in situ adaptive tabulation). The advantages grow
as the complexity of the chemistry increases.
References:
Contino, F., Jeanmart, H., Lucchini, T., & D’Errico, G. (2011).
Coupling of in situ adaptive tabulation and dynamic adaptive chemistry:
An effective method for solving combustion in engine simulations.
Proceedings of the Combustion Institute, 33(2), 3057-3064.
Contino, F., Lucchini, T., D'Errico, G., Duynslaegher, C.,
Dias, V., & Jeanmart, H. (2012).
Simulations of advanced combustion modes using detailed chemistry
combined with tabulation and mechanism reduction techniques.
SAE International Journal of Engines,
5(2012-01-0145), 185-196.
Contino, F., Foucher, F., Dagaut, P., Lucchini, T., D’Errico, G., &
Mounaïm-Rousselle, C. (2013).
Experimental and numerical analysis of nitric oxide effect on the
ignition of iso-octane in a single cylinder HCCI engine.
Combustion and Flame, 160(8), 1476-1483.
Contino, F., Masurier, J. B., Foucher, F., Lucchini, T., D’Errico, G., &
Dagaut, P. (2014).
CFD simulations using the TDAC method to model iso-octane combustion
for a large range of ozone seeding and temperature conditions
in a single cylinder HCCI engine.
Fuel, 137, 179-184.
Two tutorial cases are currently provided:
+ tutorials/combustion/chemFoam/ic8h18_TDAC
+ tutorials/combustion/reactingFoam/laminar/counterFlowFlame2D_GRI_TDAC
the first of which clearly demonstrates the advantage of dynamic
adaptive chemistry providing ~10x speedup,
the second demonstrates ISAT on the modest complex GRI mechanisms for
methane combustion, providing a speedup of ~4x.
More tutorials demonstrating TDAC on more complex mechanisms and cases
will be provided soon in addition to documentation for the operation and
settings of TDAC. Also further updates to the TDAC code to improve
consistency and integration with the rest of OpenFOAM and further
optimize operation can be expected.
Original code providing all algorithms for chemistry reduction and
tabulation contributed by Francesco Contino, Tommaso Lucchini, Gianluca
D’Errico, Hervé Jeanmart, Nicolas Bourgeois and Stéphane Backaert.
Implementation updated, optimized and integrated into OpenFOAM-dev by
Henry G. Weller, CFD Direct Ltd with the help of Francesco Contino.
dictionary files of a particular name and extracts entries of a
particular keyword, sorting results into a unique list.
For example,
foamSearch $FOAM_TUTORIALS laplacianSchemes.default fvSchemes
produces...
default Gauss linear corrected;
default Gauss linear limited corrected 0.33;
default Gauss linear limited corrected 0.5;
default Gauss linear orthogonal;
default Gauss linear uncorrected;
default none;
Uses the fantastic foamDictionary utility.
To re-use existing 'sampleDict' files simply add the following entries:
type sets;
libs ("libsampling.so");
and run
postProcess -func sampleDict
It is probably better to also rename 'sampleDict' -> 'sample' and then run
postProcess -func sampleDict