- A special purpose MeshedSurface that exposes the stored values
for direct modification.
- Its usage should be restricted to special cases where the surface
needs modifications as an atomic operation.
- Cannot test if these older reader modules actually build,
owning largely to build issues since with paraview 3.14 (Feb 2012)
and paraview 3.98 (Dec 2012) themselves.
Note: classes are prefixed with 'foamVtk' instead of 'vtk' to avoid potential
conflicts with VTK itself.
foamVtkCore
~~~~~~~~~~~
- General very low-level functionality.
foamVtkPTraits
~~~~~~~~~~~~~~
- Traits type of functionality for VTK
foamVtkOutputOptions
~~~~~~~~~~~~~~~~~~~~
- The various format output options as a class that can be passed to
formatters etc.
foamVtkCells
~~~~~~~~~~~~
- Intended for unifying vtkTopo and PV-Reader code in the future.
- Handles polyhedron decompose internally etc
foamVtkOutput, foamVtkFormatter
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Output helpers.
- Selector for individual formatters.
Currently write all scalar data a 'float' (not 'double'). Can
revisit this in the future.
On 64-bit systems, the system installations of boost, cgal are under
lib64/. The behaviour for a ThirdParty build is mostly lib/ but this
can also be changing.
Boost 1_62_0 and older build into 'lib/'.
CGAL-4.9 builds into 'lib64/', older versions into 'lib/'.
Future-proof things by using lib$WM_COMPILER_LIB_ARCH for boost and
cgal build rules, and forcing these as build targets in the ThirdParty
makeCGAL as well.
--
STYLE: check for boost/version.hpp, CGAL/version.h instead their directories
- manifest in some parallel operations.
STYLE: update foamToEnsight, foamToEnsightParts to use C++ initializer_list
- avoid warning message when removing a non-existent directory (ensight output).
* MeshedSurface / surfMesh / triSurface
- use shorter method names similar to those from volume meshes:
Sf(), magSf(), Cf()
instead of the longer ones from PrimitivePatch:
faceAreas(), magFaceAreas(), faceCentres()
- similar names throughout to ease switching between triSurface and
MeshedSurface storage.
- Write differences with respect to the specified dictionary
(or sub entry if -entry specified)
- Write the differences with respect to a template dictionary:
foamDictionary 0/U -diff $FOAM_ETC/templates/closedVolume/0/U
- Write the differences in boundaryField with respect to a
template dictionary:
foamDictionary 0/U -diff $FOAM_ETC/templates/closedVolume/0/U \
-entry boundaryField
Patch contributed by Mattijs Janssens
- Place common code under OSspecific.
By including "endian.H", either one of WM_BIG_ENDIAN or WM_LITTLE_ENDIAN
will be defined.
Provides inline 32-bit and 64-bit byte swap routines that can be
used/re-used elsewhere.
The inplace memory swaps currently used by the VTK output are left for
the moment pending further cleanup of that code.
For example, to mesh a sphere with a single block the geometry is defined in the
blockMeshDict as a searchableSurface:
geometry
{
sphere
{
type searchableSphere;
centre (0 0 0);
radius 1;
}
}
The vertices, block topology and curved edges are defined in the usual
way, for example
v 0.5773502;
mv -0.5773502;
a 0.7071067;
ma -0.7071067;
vertices
(
($mv $mv $mv)
( $v $mv $mv)
( $v $v $mv)
($mv $v $mv)
($mv $mv $v)
( $v $mv $v)
( $v $v $v)
($mv $v $v)
);
blocks
(
hex (0 1 2 3 4 5 6 7) (10 10 10) simpleGrading (1 1 1)
);
edges
(
arc 0 1 (0 $ma $ma)
arc 2 3 (0 $a $ma)
arc 6 7 (0 $a $a)
arc 4 5 (0 $ma $a)
arc 0 3 ($ma 0 $ma)
arc 1 2 ($a 0 $ma)
arc 5 6 ($a 0 $a)
arc 4 7 ($ma 0 $a)
arc 0 4 ($ma $ma 0)
arc 1 5 ($a $ma 0)
arc 2 6 ($a $a 0)
arc 3 7 ($ma $a 0)
);
which will produce a mesh in which the block edges conform to the sphere
but the faces of the block lie somewhere between the original cube and
the spherical surface which is a consequence of the edge-based
transfinite interpolation.
Now the projection of the block faces to the geometry specified above
can also be specified:
faces
(
project (0 4 7 3) sphere
project (2 6 5 1) sphere
project (1 5 4 0) sphere
project (3 7 6 2) sphere
project (0 3 2 1) sphere
project (4 5 6 7) sphere
);
which produces a mesh that actually conforms to the sphere.
See OpenFOAM-dev/tutorials/mesh/blockMesh/sphere
This functionality is experimental and will undergo further development
and generalization in the future to support more complex surfaces,
feature edge specification and extraction etc. Please get involved if
you would like to see blockMesh become a more flexible block-structured
mesher.
Henry G. Weller, CFD Direct.
- Use ensightCase for case writing.
Rebase ensightPartCells/ensightPartFaces on
ensightCells/ensightFaces routines.
- Greatly reduces code duplication potential source of errors.
- eliminate ensightAsciiStream, ensightBinaryStream, ensightStream in
favour of using ensightFile and ensightGeoFile classes throughout.
- encapsulate mesh-parts sorting with the ensightCells, ensightFaces
class.
- handle of patches/faceZones entirely within ensightMesh for a lighter
interaction with field output. Both faceZones and point fields need
more testing to see if they behave properly for all cases.
- move some output functionality into its own namespace
'ensightOutput', move into a library.
- use the ensightCase class to open new ensight output streams
in the proper sub-directory locations.