Improve alignment of its behaviour with std::shared_ptr
- element_type typedef
- swap, reset methods
* additional reference access methods:
cref()
returns a const reference, synonymous with operator().
This provides a more verbose alternative to using the '()' operator
when that is desired.
Mnemonic: a const form of 'ref()'
constCast()
returns a non-const reference, regardless if the underlying object
itself is a managed pointer or a const object.
This is similar to ref(), but more permissive.
Mnemonic: const_cast<>
Using the constCast() method greatly reduces the amount of typing
and reading. And since the data type is already defined via the tmp
template parameter, the type deduction is automatically known.
Previously,
const tmp<volScalarField>& tfld;
const_cast<volScalarField&>(tfld()).rename("name");
volScalarField& fld = const_cast<volScalarField&>(tfld());
Now,
tfld.constCast().rename("name");
auto& fld = tfld.constCast();
--
BUG: attempts to move tmp value that may still be shared.
- old code simply checked isTmp() to decide if the contents could be
transfered. However, this means that the content of a shared tmp
would be removed, leaving other instances without content.
* movable() method checks that for a non-null temporary that is
unique (not shared).
Improve alignment of its behaviour with std::unique_ptr
- element_type typedef
- release() method - identical to ptr() method
- get() method to get the pointer without checking and without releasing it.
- operator*() for dereferencing
Method name changes
- renamed rawPtr() to get()
- renamed rawRef() to ref(), removed unused const version.
Removed methods/operators
- assignment from a raw pointer was deleted (was rarely used).
Can be convenient, but uncontrolled and potentially unsafe.
Do allow assignment from a literal nullptr though, since this
can never leak (and also corresponds to the unique_ptr API).
Additional methods
- clone() method: forwards to the clone() method of the underlying
data object with argument forwarding.
- reset(autoPtr&&) as an alternative to operator=(autoPtr&&)
STYLE: avoid implicit conversion from autoPtr to object type in many places
- existing implementation has the following:
operator const T&() const { return operator*(); }
which means that the following code works:
autoPtr<mapPolyMesh> map = ...;
updateMesh(*map); // OK: explicit dereferencing
updateMesh(map()); // OK: explicit dereferencing
updateMesh(map); // OK: implicit dereferencing
for clarity it may preferable to avoid the implicit dereferencing
- prefer operator* to operator() when deferenced a return value
so it is clearer that a pointer is involve and not a function call
etc Eg, return *meshPtr_; vs. return meshPtr_();
- Eg instead of using labelHashSet, used HashSet<label> which uses
the string::hash for hashing. Other places inadvertently using the
string::hash instead of Hash<label> for hashing.
STYLE: use Map<..> instead of HashTable<.., label, Hash<label>>
- reduces clutter
NOTE: The radiative flux (qr) is positive when the heat flux is going into the wall,
this is oposite the the he flux which is positive going out of the wall.
- waitForSlave now return a Time::stopAtControls enumeration:
unknown: when lockfile has no specially recognized content.
endTime: when lockfile contains "status=done"
writeNow: when lockfile contains "action=writeNow"
nextWrite: when lockfile contains "action=nextWrite"
noWriteNow: when lockfile contains "action=noWriteNow"
These values can be used by the caller to terminate the master
(OpenFOAM) as desired in response to information placed there by the
slave process.
- expose the names of write and stopAt controls for reuse elsewhere and
provide a stopAtControls enum for 'unknown'
- track the requested number of sub-cycles (was previously a bool)
- support VTP input in functionObjectCloud scene element
- additional fallback lookup of cloud information from state properties
instead of cloud OutputProperties
Residual fields can be written using the new 'writeFields' entry, e.g.
functions
{
residual
{
type residuals;
libs ("libutilityFunctionObjects.so");
fields (".*");
writeControl writeTime;
writeFields true;
}
}
Fields currently correspond to the initial residual for the last solver
iteration.
When specifying the averaging data, a new `windowType` option is
available, taking the values:
- none: no windowing
- approximate: past functionality (v1706 and earlier)
- exact: exact moving average - will store and write (for restart) all
fields in the window