- avoids clutter of argList::envGlobalPath() ...
ENH: allow temporary overwriting of output writeFormat
- allows switching for particular output routines
COMP: explicitly use TimePaths methods with Time
- this simplifies any overloading done at a later stage
- this is a placeholder boundary BC for using with bad or illegal
edges. It is currently functionally identical to zero-gradient.
Naming and definition still subject to change.
- encompasses isReadOptional or isReadRequired check
STYLE: allow LAZY_READ as a shorter synonym for READ_IF_PRESENT
- add helper for downgrading MUST_READ... to LAZY_READ
- if the volume faceProcAddressing is missing, it is not readily
possible to determine equivalent area procAddressing.
Instead of throwing an error, be more fault-tolerant by having it
create with READ_IF_PRESENT and then detect and warn
if there are problems.
ENH: extend rmDir to handle removal of empty directories only
- recursively remove directories that only contain other directories
but no other contents. Treats dead links as non-content.
- clearer coding intent. Mark operator() as 'deprecated'
- add bounds checking to get(label) and set(label) methods.
This gives failsafe behaviour for get() that is symmetric with
HashPtrTable, autoPtr etc and aligns the set(label) methods
for UPtrList, PtrList and PtrDynList.
- use top-level PtrList::clone() instead of cloning individual elements
ENH: support HashPtrTable set with refPtr/tmp (flexibility)
- simplify procAddressing read/write
- avoid accessing points in faMeshReconstructor.
Can rely on the patch meshPoints (labelList), which does not need
access to a pointField
- report number of points on decomposed mesh.
Can be useful additional information.
Additional statistics for finite area decomposition
- provide bundled reconstructAllFields for various reconstructors
- remove reconstructPar checks for very old face addressing
(from foam2.0 - ie, older than OpenFOAM itself)
- bundle all reading into fieldsDistributor tools,
where it can be reused by various utilities as required.
- combine decomposition fields as respective fieldsCache
which eliminates most of the clutter from decomposePar
and similfies reuse in the future.
STYLE: remove old wordHashSet selection (deprecated in 2018)
BUG: incorrect face flip handling for faMeshReconstructor
- a latent bug which is not yet triggered since the faMesh faces are
currently only definable on boundary faces (which never flip)
- bundles frequently used 'gather/scatter' patterns more consistently.
- combineAllGather -> combineGather + broadcast
- listCombineAllGather -> listCombineGather + broadcast
- mapCombineAllGather -> mapCombineGather + broadcast
- allGatherList -> gatherList + scatterList
- reduce -> gather + broadcast (ie, allreduce)
- The allGatherList currently wraps gatherList/scatterList, but may be
replaced with a different algorithm in the future.
STYLE: PstreamCombineReduceOps.H is mostly unneeded now
STYLE: LduInterfaceFieldPtrsList as alias instead of a class
STYLE: define patch lists typedefs when defining the base patch
- eg, polyPatchList typedef within polyPatch.H
INT: relocate GeometricField::Boundary -> GeometricBoundaryField
- was internal to GeometricField but moving it outside simplifies
forward declarations etc. Code adapted from openfoam.org
- gather/scatter types of operations can avoid AllToAll communication
and use simple MPI gather (or scatter) to establish the receive sizes.
New methods: finishedGathers() / finishedScatters()
- PstreamBuffers nProcs() and allProcs() methods to recover the rank
information consistent with the communicator used for construction
- allowClearRecv() methods for more control over buffer reuse
For example,
pBufs.allowClearRecv(false);
forAll(particles, particlei)
{
pBufs.clear();
fill...
read via IPstream(..., pBufs);
}
This preserves the receive buffers memory allocation between calls.
- finishedNeighbourSends() method as compact wrapper for
finishedSends() when send/recv ranks are identically
(eg, neighbours)
- hasSendData()/hasRecvData() methods for PstreamBuffers.
Can be useful for some situations to skip reading entirely.
For example,
pBufs.finishedNeighbourSends(neighProcs);
if (!returnReduce(pBufs.hasRecvData(), orOp<bool>()))
{
// Nothing to do
continue;
}
...
On an individual basis:
for (const int proci : pBufs.allProcs())
{
if (pBufs.hasRecvData(proci))
{
...
}
}
Also conceivable to do the following instead (nonBlocking only):
if (!returnReduce(pBufs.hasSendData(), orOp<bool>()))
{
// Nothing to do
pBufs.clear();
continue;
}
pBufs.finishedNeighbourSends(neighProcs);
...
- the patch remapping in faFieldDecomposer calls weights
internalField() which can trigger parallel communication on the
complete mesh for some processors only (ie, blocks).
Force a priori creation of weights instead.
- ensure that the complete mesh (reconstruction helper)
is serial when adding patches.
- when creating a finite-area mesh in parallel, need to determine
the equivalent ProcAddressing for the faMesh.
In the faceProcAddressing the collected and sorted order was being
scattered directly back to the individual processors instead of only
the sections relevant to each particular processor.
This caused the observed jumbled order for reconstructed fields.
- A bare-bones reconstructor for finiteArea meshes when processor
meshes are available (in parallel) but an equivalent serial faMesh
is needed for reconstruction or decomposition.
In these situations, a serial version of the faMesh is needed,
but preferably without reconstructing the entire volume mesh.
It uses the finiteVolume faceProcAddressing in addition to
the geometric information available from the underlying polyMesh.
The resulting equivalent faMesh can be used for basic operations,
but caution should be exercised before attempting large operations.