In order to simplify expressions involving dimensioned internal field it
is preferable to use a simpler access convention. Given that
GeometricField is derived from DimensionedField it is simply a matter of
de-referencing this underlying type unlike the boundary field which is
peripheral information. For consistency with the new convention in
"tmp" "dimensionedInteralFieldRef()" has been renamed "ref()".
Non-const access to the internal field now obtained from a specifically
named access function consistent with the new names for non-canst access
to the boundary field boundaryFieldRef() and dimensioned internal field
dimensionedInternalFieldRef().
See also commit 22f4ad32b1
When the GeometricBoundaryField template class was originally written it
was a separate class in the Foam namespace rather than a sub-class of
GeometricField as it is now. Without loss of clarity and simplifying
code which access the boundary field of GeometricFields it is better
that GeometricBoundaryField be renamed Boundary for consistency with the
new naming convention for the type of the dimensioned internal field:
Internal, see commit 4a57b9be2e
This is a very simple text substitution change which can be applied to
any code which compiles with the OpenFOAM-dev libraries.
Given that the type of the dimensioned internal field is encapsulated in
the GeometricField class the name need not include "Field"; the type
name is "Internal" so
volScalarField::DimensionedInternalField -> volScalarField::Internal
In addition to the ".dimensionedInternalField()" access function the
simpler "()" de-reference operator is also provided to greatly simplify
FV equation source term expressions which need not evaluate boundary
conditions. To demonstrate this kEpsilon.C has been updated to use
dimensioned internal field expressions in the k and epsilon equation
source terms.
There is a need to specify const or non-const access to a non-const
object which is not currently possible with the "boundaryField()" access
function the const-ness of the return of which is defined by the
const-ness of the object for which it is called. For consistency with
the latest "tmp" storage class in which non-const access is obtained
with the "ref()" function it is proposed to replace the non-const form
of "boundaryField()" with "boundaryFieldRef()".
Thanks to Mattijs Janssens for starting the process of migration to
"boundaryFieldRef()" and providing a patch for the OpenFOAM and
finiteVolume libraries.
in case of tmp misuse.
Simplified tmp reuse pattern in field algebra to use tmp copy and
assignment rather than the complex delayed call to 'ptr()'.
Removed support for unused non-const 'REF' storage of non-tmp objects due to C++
limitation in constructor overloading: if both tmp(T&) and tmp(const T&)
constructors are provided resolution is ambiguous.
The turbulence libraries have been upgraded and '-DCONST_TMP' option
specified in the 'options' file to switch to the new 'tmp' behavior.
This resolves a whole range of issues and work-arounds with earlier
releases. This version of icpc is more or less compatible with the
latest gcc and clang compilers and only required one hack to avoid
warnings from PackedBoolList.H.
Relaxation and solution parameters for the final iteration in PIMPLE loops are
now selected according to the value of the "finalIteration" entry in the
mesh::data dictionary.
rhoPimpleFoam significantly updates and now replaces rhoPisoFoam.
- uniform use of reinterpret_cast<foo*>(0) instead of
reinterpret_cast<foo*>(NULL)
- make all static null() members inline since they are really only a cast:
"*reinterpret_cast<foo*>(0)"