Commit Graph

13 Commits

Author SHA1 Message Date
7e61f36c12 RELEASE: Updated headers to v2212 2022-12-21 16:16:18 +00:00
8a7221cf50 TUT: update tutorials to use dictionary-style sets
- can now specify sampled sets as dictionary entries instead of a list
  entry.
    can now use:  sets { ... }
    instead of:   sets ( ... );

  This is similar to sampled surfaces and makes it easier to
  manage with dictionary manipulation tools.

TUT: update to use writeTime instead of outputTime
2022-03-10 19:45:20 +01:00
a2014242cf RELEASE: Updated headers for v2112 2021-12-20 14:18:01 +00:00
e3796745ed CONFIG: Updated headers to v2106
Minor clean-up
2021-06-28 09:14:42 +01:00
f62a599eef TUT: heatTransfer: clean up tutorials 2021-05-26 11:35:49 +00:00
79e353b84e RELEASE: Updated version to v2012 2020-12-23 10:01:39 +01:00
538d749220 REL: Updated headers to version v2006 2020-06-29 17:27:54 +01:00
ae2ab06312 REL: Release preparations 2019-12-23 09:49:23 +00:00
880d81475b TUT: use simpler syntax for libs entries 2019-08-30 16:45:45 +02:00
be44dcaf1f RELEASE: Version clean-up for release 2019-06-25 11:51:19 +01:00
9231534efa STYLE: Updating version to v1812 2018-12-19 18:07:52 +00:00
6e35bcda70 ENH: Updated config for release v1806 2018-06-28 12:56:00 +01:00
2af8d38827 ENH: Added new Joule Heating fvOption and test case
Evolves an electrical potential equation

    \f[
        \grad \left( \sigma \grad V \right)
    \f]

    where \f$ V \f$ is electrical potential and \f$\sigma\f$ is the
    electrical current

    To provide a Joule heating contribution according to:

    Differential form of Joule heating - power per unit volume:

    \f[
        \frac{d(P)}{d(V)} = J \cdot E
    \f]

    where \f$ J \f$ is the current density and \f$ E \f$ the electric
field.
    If no magnetic field is present:

    \f[
        J = \sigma E
    \f]

    The electric field given by

    \f[
        E = \grad V
    \f]

    Therefore:

    \f[
        \frac{d(P)}{d(V)} = J \cdot E
                          = (sigma E) \cdot E
                          = (sigma \grad V) \cdot \grad V
    \f]

Usage
    Isotropic (scalar) electrical conductivity
    \verbatim
    jouleHeatingSourceCoeffs
    {
        anisotropicElectricalConductivity no;

        // Optionally specify the conductivity as a function of
        // temperature
        // Note: if not supplied, this will be read from the time
        // directory
        sigma           table
        (
            (273        1e5)
            (1000       1e5)
        );
    }
    \endverbatim

    Anisotropic (vectorial) electrical conductivity
    jouleHeatingSourceCoeffs
    {
        anisotropicElectricalConductivity yes;

        coordinateSystem
        {
            type        cartesian;
            origin      (0 0 0);

            coordinateRotation
            {
                type        axesRotation;
                e1          (1 0 0);
                e3          (0 0 1);
            }
        }

        // Optionally specify sigma as a function of temperature
        //sigma           (31900 63800 127600);
        //
        //sigma           table
        //(
        //    (0      (0 0 0))
        //    (1000   (127600 127600 127600))
        //);
    }

    Where:
    \table
        Property     | Description               | Required  | Default
value
        T            | Name of temperature field | no        | T
        sigma        | Electrical conductivity as a function of
temperature |no|
        anisotropicElectricalConductivity | Anisotropic flag | yes |
    \endtable

    The electrical conductivity can be specified using either:
    - If the \c sigma entry is present the electrical conductivity is
      specified
      as a function of temperature using a Function1 type
    - If not present the sigma field will be read from file
    - If the anisotropicElectricalConductivity flag is set to 'true',
      sigma
      should be specified as a vector quantity
2017-06-09 10:29:21 +01:00