- Default is a width of 8 characters, but this can be extended up to 31
characters via the '-width' command-line option.
- Now use a similar structure as foamToEnsightParts for the masking.
This reduces the clutter within the directory, makes it easier to
selectively delete some time steps (using shell commands).
- Added in a "time" information data in each sub-directory to
make it possible to reconstruct the case file with an external
script.
- Conversion of cloud data should now also work in parallel
(may need more testing).
- Support binary output for cloud data.
- Better avoidance of illegal ensight variable names.
But still partially incomplete (due to patch fields).
==================================================
Example of NEW file structure:
EnSight/verticalChannel.case # case name
EnSight/geometry # for non-moving geometry
EnSight/data/ # time-varying data
EnSight/data/00000000/
EnSight/data/00000001/
...
Fields are stored by name within the data/********/ directories:
EnSight/data/00000001/time # human-readable time info
EnSight/data/00000001/U
EnSight/data/00000001/p
...
EnSight/data/00000001/geometry # for moving geometry
Clouds are stored at the next sub-directory level:
EnSight/data/00000001/lagrangian/<cloudName>/positions
EnSight/data/00000001/lagrangian/<cloudName>/U
...
==================================================
The old structure was significantly more cluttered:
EnSight/verticalChannel.case
EnSight/verticalChannel.0000.mesh
EnSight/verticalChannel.0001.p
EnSight/verticalChannel.0001.<cloudName>
EnSight/verticalChannel.0001.<cloudName>.U
==================================================
- There will be triangles rendered inside the mesh (when
surface-rendering), because one of the cell's triangles is defined
as a quadrangle in VTK_WEDGE.
- Therefore, this VTK_WEDGE representation is only used when
decomposing the mesh, otherwise the correct representation is done
by VTK_POLYHEDRON.
- Furthermore, using VTK_PYRAMID gave worse result, because it renders
2 triangles inside the mesh for the collapsed quadrangle, likely due
to mismatch with the adjacent cell's face.
- Using VTK_HEXAHEDRON was not tested in this iteration, given that it
should give even worse results, when compared to using VTK_PYRAMID.
Patch contributed by Bruno Santos
Resolves bug-report http://bugs.openfoam.org/view.php?id=2099
- Cannot pass through to underlying list constructor directly.
- As this constructor was broken, there seem to be a number of
workarounds scattered in the code. Could revisit them in the future
as part of code-style:
edgeMesh(const Xfer<pointField>&, const Xfer<edgeList>&);
CompactIOField(const IOobject&, const Xfer<Field<T>>&);
GlobalIOField(const IOobject&, const Xfer<Field<Type>>&);
IOField(const IOobject&, const Xfer<Field<Type>>&);
- Cannot test if these older reader modules actually build,
owning largely to build issues since with paraview 3.14 (Feb 2012)
and paraview 3.98 (Dec 2012) themselves.
Note: classes are prefixed with 'foamVtk' instead of 'vtk' to avoid potential
conflicts with VTK itself.
foamVtkCore
~~~~~~~~~~~
- General very low-level functionality.
foamVtkPTraits
~~~~~~~~~~~~~~
- Traits type of functionality for VTK
foamVtkOutputOptions
~~~~~~~~~~~~~~~~~~~~
- The various format output options as a class that can be passed to
formatters etc.
foamVtkCells
~~~~~~~~~~~~
- Intended for unifying vtkTopo and PV-Reader code in the future.
- Handles polyhedron decompose internally etc
foamVtkOutput, foamVtkFormatter
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Output helpers.
- Selector for individual formatters.
Currently write all scalar data a 'float' (not 'double'). Can
revisit this in the future.
Now the functionality to write single graph files or log files (vs time)
may be used in the creation of any form of functionObject, not just
those relating to a mesh region.
- Allows passing of additional information (per-face zone ids) or possibly
other things, while reducing the number of arguments to pass.
- In sampledTriSurfaceMesh, preserve the region information that was
read in, passing it onwards via the UnsortedMeshSurface content.
The Nastran surface writer is currently the only writer making use
of this per-face zone information.
Passing it through as a PSHELL attribute, which should retain the
distinction for parts. (issue #204)
- use surfFaces() to return the templated list of faces.
This frees up the method 'faces()' to be used as a virtual method,
which will be needed at a later stage.
Until C++ supports 'concepts' the only way to support construction from
two iterators is to provide a constructor of the form:
template<class InputIterator>
List(InputIterator first, InputIterator last);
which for some types conflicts with
//- Construct with given size and value for all elements
List(const label, const T&);
e.g. to construct a list of 5 scalars initialized to 0:
List<scalar> sl(5, 0);
causes a conflict because the initialization type is 'int' rather than
'scalar'. This conflict may be resolved by specifying the type of the
initialization value:
List<scalar> sl(5, scalar(0));
The new initializer list contructor provides a convenient and efficient alternative
to using 'IStringStream' to provide an initial list of values:
List<vector> list4(IStringStream("((0 1 2) (3 4 5) (6 7 8))")());
or
List<vector> list4
{
vector(0, 1, 2),
vector(3, 4, 5),
vector(6, 7, 8)
};
replace system() call with vfork/exec combination (issue #185)
Tested systemCall function object, dynamicCode, but should be rechecked with IB+openmpi
@Prashant
See merge request !55