- appears to hit single precision overflow with clang-15 in
face::center(), cellModel::center() and blockMesh createPoints().
The blockMesh might be particularly sensitive, since the points are
frequently defined in millimeters (scaled later), which results
in large intermediate summations.
Similar to primitiveMesh checks, use double precision for these
calculations.
ENH: support vector += and -= from compatible types
- eg, doubleVector += floatVector is now supported.
This streamlines some coding for mixed precision.
- To avoid lots of boilerplate, do not yet attempt to support general
operations such as `operator+(doubleVector, floatVector)`
until they become necessary.
- similar to what std::copy_n and std::fill_n would do, except with
templated loops. This allows compile-time transcribing with loop
unrolling. For example,
vector vec1 = ..., vec2 = ...;
FixedList<scalar, 6> values;
VectorSpaceOps<3>::copy_n(vec1.begin(), values.begin());
VectorSpaceOps<3>::copy_n(vec2.begin(), values.begin(3))
// do something with all of these values
STYLE: make start index of VectorSpaceOps optional
ENH: add clamped begin(int) versions to FixedList as per UList
- background: for some application it can be useful to have fully
sorted points. i.e., sorted by x, followed by y, followed by z.
The default VectorSpace 'operator<' compares *all*
components. This is seen by the following comparisons
1. a = (-2.2 -3.3 -4.4)
b = (-1.1 -2.2 3.3)
(a < b) : True
Each 'a' component is less than each 'b' component
2. a = (-2.2 -3.3 -4.4)
b = (-2.2 3.3 4.4)
(a < b) : False
The a.x() is not less than b.x()
The static definitions 'less_xyz', 'less_yzx', 'less_zxy'
instead use comparison of the next components as tie breakers
(like a lexicographic sort).
- same type of definition that Pair and Tuple2 use.
a = (-2.2 -3.3 -4.4)
b = (-2.2 3.3 4.4)
vector::less_xyz(a, b) : True
The a.x() == b.x(), but a.y() < b.y()
They can be used directly as comparators:
pointField points = ...;
std::sort(points.begin(), points.end(), vector::less_zxy);
ENH: make VectorSpace named access methods noexcept.
Since the addressing range is restricted to enumerated offsets
(eg, X/Y/Z) into storage, always remains in-range.
Possible to make constexpr with future C++ versions.
STYLE: VectorSpace 'operator>' defined using 'operator<'
- standard rewriting rule
- for most field types this is a no-op, but for a field of floatVector
or doubleVector (eg, vector and solveVector) it will normalise each
element with divide-by-zero protection.
More reliable and efficient than dividing a field by the mag of itself
(even with VSMALL protection).
Applied to FieldField and GeometricField as well.
Eg,
fld.normalise();
vs.
fld /= mag(fld) + VSMALL;
ENH: support optional tolerance for vector::normalise
- for cases where tolerances larger than ROOTVSMALL are preferable.
Not currently available for the field method (a templating question).
ENH: vector::removeCollinear method
- when working with geometries it is frequently necessary to have a
normal vector without any collinear components. The removeCollinear
method provides for clearer, compacter code.
Eg,
vector edgeNorm = ...;
const vector edgeDirn = e.unitVec(points());
edgeNorm.removeCollinear(edgeDirn);
edgeNorm.normalise();
vs.
vector edgeNorm = ...;
const vector edgeDirn = e.unitVec(points());
edgeNorm -= edgeDirn*(edgeDirn & edgeNorm);
edgeNorm /= mag(edgeNorm);
- for use when the is_contiguous check has already been done outside
the loop. Naming as per std::span.
STYLE: use data/cdata instead of begin
ENH: replace random_shuffle with shuffle, fix OSX int64 ambiguity
- this adds support for various STL operations including
* sorting, filling, find min/max element etc.
* for-range iteration
STYLE: use constexpr for VectorSpace rank
- the vector normalise() method modifies the object inplace,
the normalised function returns a copy.
vector vec1(1,2,3);
vec1.normalise();
vs
vector vec1(1,2,3);
vec1 /= mag(vec1) + VSMALL;
For const usage, can use either of these
const vector vec2a(normalised(vector(1,2,3)));
const vector vec2b(vector(1,2,3).normalise());