splitMeshRegions: handle flipping of faces for surface fields
subsetMesh: subset dimensionedFields
decomposePar: use run-time selection of decomposition constraints. Used to
keep cells on particular processors. See the decomposeParDict in
$FOAM_UTILITIES/parallel/decomposePar:
- preserveBaffles: keep baffle faces on same processor
- preserveFaceZones: keep faceZones owner and neighbour on same processor
- preservePatches: keep owner and neighbour on same processor. Note: not
suitable for cyclicAMI since these are not coupled on the patch level
- singleProcessorFaceSets: keep complete faceSet on a single processor
- refinementHistory: keep cells originating from a single cell on the
same processor.
decomposePar: clean up decomposition of refinement data from snappyHexMesh
reconstructPar: reconstruct refinement data (refineHexMesh, snappyHexMesh)
reconstructParMesh: reconstruct refinement data (refineHexMesh, snappyHexMesh)
redistributePar:
- corrected mapping surfaceFields
- adding processor patches in order consistent with decomposePar
argList: check that slaves are running same version as master
fvMeshSubset: move to dynamicMesh library
fvMeshDistribute:
- support for mapping dimensionedFields
- corrected mapping of surfaceFields
parallel routines: allow parallel running on single processor
Field: support for
- distributed mapping
- mapping with flipping
mapDistribute: support for flipping
AMIInterpolation: avoid constructing localPoints
//- Disallow default shallow-copy assignment
//
// Assignment of UList<T> may need to be either shallow (copy pointer)
// or deep (copy elements) depending on context or the particular type
// of list derived from UList and it is confusing and prone to error
// for the default assignment to be either. The solution is to
// disallow default assignment and provide separate 'shallowCopy' and
// 'deepCopy' member functions.
void operator=(const UList<T>&) = delete;
//- Copy the pointer held by the given UList.
inline void shallowCopy(const UList<T>&);
//- Copy elements of the given UList.
void deepCopy(const UList<T>&);
Contributed by Mattijs Janssens.
1. Any non-blocking data exchange needs to know in advance the sizes to
receive so it can size the buffer. For "halo" exchanges this is not
a problem since the sizes are known in advance but or all other data
exchanges these sizes need to be exchanged in advance.
This was previously done by having all processors send the sizes of data to
send to the master and send it back such that all processors
- had the same information
- all could work out who was sending what to where and hence what needed to
be received.
This is now changed such that we only send the size to the
destination processor (instead of to all as previously). This means
that
- the list of sizes to send is now of size nProcs v.s. nProcs*nProcs before
- we cut out the route to the master and back by using a native MPI
call
It causes a small change to the API of exchange and PstreamBuffers -
they now return the sizes of the local buffers only (a labelList) and
not the sizes of the buffers on all processors (labelListList)
2. Reversing the order of the way in which the sending is done when
scattering information from the master processor to the other
processors. This is done in a tree like fashion. Each processor has a
set of processors to receive from/ send to. When receiving it will
first receive from the processors with the least amount of
sub-processors (i.e. the ones which return first). When sending it
needs to do the opposite: start sending to the processor with the
most amount of sub-tree since this is the critical path.
This change requires that the de-reference operator '()' returns a
const-reference to the object stored irrespective of the const-ness of
object stored and the new member function 'ref()' is provided to return
an non-const reference to stored object which throws a fatal error if the
stored object is const.
In order to smooth the transition to this new safer 'tmp' the now
deprecated and unsafe non-const de-reference operator '()' is still
provided by default but may be switched-off with the compilation switch
'CONST_TMP'.
The main OpenFOAM library has already been upgraded and '-DCONST_TMP'
option specified in the 'options' file to switch to the new 'tmp'
behavior. The rest of OpenFOAM-dev will be upgraded over the following
few weeks.
Henry G. Weller
CFD Direct
To be used instead of zeroGradientFvPatchField for temporary fields for
which zero-gradient extrapolation is use to evaluate the boundary field
but avoiding fields derived from temporary field using field algebra
inheriting the zeroGradient boundary condition by the reuse of the
temporary field storage.
zeroGradientFvPatchField should not be used as the default patch field
for any temporary fields and should be avoided for non-temporary fields
except where it is clearly appropriate;
extrapolatedCalculatedFvPatchField and calculatedFvPatchField are
generally more suitable defaults depending on the manner in which the
boundary values are specified or evaluated.
The entire OpenFOAM-dev code-base has been updated following the above
recommendations.
Henry G. Weller
CFD Direct
Moved file path handling to regIOobject and made it type specific so
now every object can have its own rules. Examples:
- faceZones are now processor local (and don't search up anymore)
- timeStampMaster is now no longer hardcoded inside IOdictionary
(e.g. uniformDimensionedFields support it as well)
- the distributedTriSurfaceMesh is properly processor-local; no need
for fileModificationChecking manipulation.
- redistributePar to have almost (complete) functionality of decomposePar+reconstructPar
- low-level distributed Field mapping
- support for mapping surfaceFields (including flipping faces)
- support for decomposing/reconstructing refinement data
Original fix (http://www.openfoam.org/mantisbt/view.php?id=1780)
did an increment to create a new communicator. This might
access the communicator-to-mpi_structure tables in PstreamGlobals.H outside
range. Instead allocate and release communicator.
by ensuring tetBasePtIs is called on all processors, even for those with
0 cells. Also use unique communicator for globalMeshData to avoid data
transfer interference.
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=1792
Avoids problems with overlapping communicationbetween these reductions
and the calculation of deltaCoeffs. This is a temporary fix while code
reorganizations are undertaken to ensure the globalMeshData is updated
before deltaCoeffs are requested.
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=1780