Commit Graph

13 Commits

Author SHA1 Message Date
c2a0663cc7 TUT: use general 'scale' instead of 'convertToMeters' in blockMeshDict
- although this has been supported for many years, the tutorials
  continued to use "convertToMeters" entry, which is specific to blockMesh.
  The "scale" is more consistent with other dictionaries.

ENH:
- ignore "scale 0;" (treat as no scaling) for blockMeshDict,
  consistent with use elsewhere.
2017-08-03 06:38:30 +02:00
dcb1a95e35 MRG: Integrated Foundation code to commit 7d6845d 2017-03-23 14:33:33 +00:00
7d6845defa rhoSimpleFoam: Added support for transonic flow of liquids and real gases
Both stardard SIMPLE and the SIMPLEC (using the 'consistent' option in
fvSolution) are now supported for both subsonic and transonic flow of all
fluid types.
2017-02-24 16:20:06 +00:00
a1c8cde310 rhoSimpleFoam: added support for compressible liquid flows
rhoSimpleFoam now instantiates the lower-level fluidThermo which instantiates
either a psiThermo or rhoThermo according to the 'type' specification in
thermophysicalProperties, e.g.

thermoType
{
    type            hePsiThermo;
    mixture         pureMixture;
    transport       sutherland;
    thermo          janaf;
    equationOfState perfectGas;
    specie          specie;
    energy          sensibleInternalEnergy;
}

instantiates a psiThermo for a perfect gas with JANAF thermodynamics, whereas

thermoType
{
    type            heRhoThermo;
    mixture         pureMixture;
    properties      liquid;
    energy          sensibleInternalEnergy;
}

mixture
{
    H2O;
}

instantiates a rhoThermo for water, see new tutorial
compressible/rhoSimpleFoam/squareBendLiq.

In order to support complex equations of state the pressure can no longer be
unlimited and rhoSimpleFoam now limits the pressure rather than the density to
handle start-up more robustly.

For backward compatibility 'rhoMin' and 'rhoMax' can still be used in the SIMPLE
sub-dictionary of fvSolution which are converted into 'pMax' and 'pMin' but it
is better to set either 'pMax' and 'pMin' directly or use the more convenient
'pMinFactor' and 'pMinFactor' from which 'pMax' and 'pMin' are calculated using
the fixed boundary pressure or reference pressure e.g.

SIMPLE
{
    nNonOrthogonalCorrectors 0;

    pMinFactor      0.1;
    pMaxFactor      1.5;

    transonic       yes;
    consistent      yes;

    residualControl
    {
        p               1e-3;
        U               1e-4;
        e               1e-3;
        "(k|epsilon|omega)" 1e-3;
    }
}
2017-02-24 11:18:01 +00:00
c0f44ac4f3 MRG: Integrated foundation code 2016-12-12 12:10:29 +00:00
83f3044db9 tutorials/compressible/rhoSimpleFoam/squareBend: Stabilize by further relaxing e
Patch contributed by Mattijs Janssens
http://bugs.openfoam.org/view.php?id=2382
2016-12-09 16:53:35 +00:00
9fbd612672 GIT: Initial state after latest Foundation merge 2016-09-20 14:49:08 +01:00
344f435f54 Tutorials fvSolution files: removed solver entries which use default
values; formatted Switch entries consistently across all cases
2016-06-15 07:39:12 +01:00
f0c3e8d599 STYLE: Updated version to 'plus' 2015-12-22 23:14:17 +00:00
8837a89237 STYLE: Updated links from openfoam.org to openfoam.com 2015-12-09 15:03:05 +00:00
0fb6a01280 fluxRequired: Added setFluxRequired function to fvSchemes class
Added calls to setFluxRequired for p, p_rgh etc. in all solvers which
avoids the need to add fluxRequired entries in fvSchemes dictionaries.
2015-07-15 21:57:16 +01:00
722a824b44 tutorials/compressible/rhoSimpleFoam/squareBend: update application 2015-07-05 18:23:05 +01:00
8fc3d158ff rhoSimpleFoam: Added "consistent" option to replace rhoSimplecFoam
See tutorials/compressible/rhoSimpleFoam/squareBend

SIMPLE
{
    nNonOrthogonalCorrectors 0;
    rhoMin          0.1;
    rhoMax          1.0;
    transonic       yes;
    consistent      yes;

    residualControl
    {
        p               1e-3;
        U               1e-4;
        e               1e-3;

        // possibly check turbulence fields
        "(k|epsilon|omega)" 1e-3;
    }
}

relaxationFactors
{
    fields
    {
        p               1;
        rho             1;
    }
    equations
    {
        p               1;
        U               0.9;
        e               0.9;
        k               0.9;
        epsilon         0.9;
    }
}
2015-06-27 17:42:59 +01:00