Improve alignment of its behaviour with std::unique_ptr
- element_type typedef
- release() method - identical to ptr() method
- get() method to get the pointer without checking and without releasing it.
- operator*() for dereferencing
Method name changes
- renamed rawPtr() to get()
- renamed rawRef() to ref(), removed unused const version.
Removed methods/operators
- assignment from a raw pointer was deleted (was rarely used).
Can be convenient, but uncontrolled and potentially unsafe.
Do allow assignment from a literal nullptr though, since this
can never leak (and also corresponds to the unique_ptr API).
Additional methods
- clone() method: forwards to the clone() method of the underlying
data object with argument forwarding.
- reset(autoPtr&&) as an alternative to operator=(autoPtr&&)
STYLE: avoid implicit conversion from autoPtr to object type in many places
- existing implementation has the following:
operator const T&() const { return operator*(); }
which means that the following code works:
autoPtr<mapPolyMesh> map = ...;
updateMesh(*map); // OK: explicit dereferencing
updateMesh(map()); // OK: explicit dereferencing
updateMesh(map); // OK: implicit dereferencing
for clarity it may preferable to avoid the implicit dereferencing
- prefer operator* to operator() when deferenced a return value
so it is clearer that a pointer is involve and not a function call
etc Eg, return *meshPtr_; vs. return meshPtr_();
to have the prefix 'write' rather than 'output'
So outputTime() -> writeTime()
but 'outputTime()' is still supported for backward-compatibility.
Also removed the redundant secondary-writing functionality from Time
which has been superseded by the 'writeRegisteredObject' functionObject.
To be used instead of zeroGradientFvPatchField for temporary fields for
which zero-gradient extrapolation is use to evaluate the boundary field
but avoiding fields derived from temporary field using field algebra
inheriting the zeroGradient boundary condition by the reuse of the
temporary field storage.
zeroGradientFvPatchField should not be used as the default patch field
for any temporary fields and should be avoided for non-temporary fields
except where it is clearly appropriate;
extrapolatedCalculatedFvPatchField and calculatedFvPatchField are
generally more suitable defaults depending on the manner in which the
boundary values are specified or evaluated.
The entire OpenFOAM-dev code-base has been updated following the above
recommendations.
Henry G. Weller
CFD Direct
Now solvers return solver performance information for all components
with backward compatibility provided by the "max" function which created
the scalar solverPerformance from the maximum component residuals from
the SolverPerformance<Type>.
The residuals functionObject has been upgraded to support
SolverPerformance<Type> so that now the initial residuals for all
(valid) components are tabulated, e.g. for the cavity tutorial case the
residuals for p, Ux and Uy are listed vs time.
Currently the residualControl option of pimpleControl and simpleControl
is supported in backward compatibility mode (only the maximum component
residual is considered) but in the future this will be upgraded to
support convergence control for the components individually.
This development started from patches provided by Bruno Santos, See
http://www.openfoam.org/mantisbt/view.php?id=1824
- change system/controlDict to use functions {..} instead of functions (..);
* This is internally more efficient
- fixed formatting of system/controlDict functions entry
- pedantic change: use 'return 0' instead of 'return(0)' in the applications,
since return is a C/C++ keyword, not a function.
- this (now deprecated) idiom:
for (runTime++; !runTime.end(); runTime++) { ... }
has a few problems:
* stop-on-next-write will be off-by-one (ie, doesn't work)
* function objects are not executed on exit with runTime.end()
Fixing these problems is not really possible.
- this idiom
while (runTime.run())
{
runTime++;
...
}
works without the above problems.