ENH: add pTraits and IO for std::int8_t
STYLE: cull some implicitly available includes
- pTraits.H is included by label/scalar etc
- zero.H is included by UList
STYLE: cull redundant forward declarations for Istream/Ostream
- use default initialize boundBox instead of invertedBox
- reset() instead of assigning from invertedBox
- extend (three parameter version) and grow method
- inflate(Random) instead of extend + re-assigning
- the boundBox for a given cell, using the cheapest calculation:
- cellPoints if already available, since this will involve the
fewest number of min/max comparisions.
- otherwise walk the cell faces: via the cell box() method
to avoid creating demand-driven cellPoints etc.
ENH: use direct access to pointHit as point(), use dist(), distSqr()
- if the pointHit has already been checked for hit(), can/should
simply use point() noexcept access subsequently to avoid redundant
checks. Using vector distSqr() methods provides a minor optimization
(no itermediate temporary), but can also make for clearer code.
ENH: copy construct pointIndexHit with different index
- symmetric with constructing from a pointHit with an index
STYLE: prefer pointHit point() instead of rawPoint()
STYLE: combine templated/non-templated headers (reduced clutter)
STYLE: use hitPoint(const point&) combined setter
- same as setHit() + setPoint(const point&)
ENH: expose and use labelOctBits::pack method for addressing
- bundles frequently used 'gather/scatter' patterns more consistently.
- combineAllGather -> combineGather + broadcast
- listCombineAllGather -> listCombineGather + broadcast
- mapCombineAllGather -> mapCombineGather + broadcast
- allGatherList -> gatherList + scatterList
- reduce -> gather + broadcast (ie, allreduce)
- The allGatherList currently wraps gatherList/scatterList, but may be
replaced with a different algorithm in the future.
STYLE: PstreamCombineReduceOps.H is mostly unneeded now
- when writing surface formats (eg, vtk, ensight etc) the sampled
surfaces merge the faces/points originating from different
processors into a single surface (ie, patch gatherAndMerge).
Previous versions of mergePoints simply merged all points possible,
which proves to be rather slow for larger meshes. This has now been
modified to only consider boundary points, which reduces the number
of points to consider. As part of this change, the reference point
is now always equivalent to the min of the bounding box, which
reduces the number of search loops. The merged points retain their
original order.
- inplaceMergePoints version to simplify use and improve code
robustness and efficiency.
ENH: make PrimitivePatch::boundaryPoints() less costly
- if edge addressing does not already exist, it will now simply walk
the local face edges directly to define the boundary points.
This avoids a rather large overhead of the full faceFaces,
edgeFaces, faceEdges addressing.
This operation is now more important since it is used in the revised
patch gatherAndMerge.
ENH: topological merge for mesh-based surfaces in surfaceFieldValue
- using the proximityRegions filter when there is no enclosing surface
to segregate domains causes a surface of zero-faces to be created.
In most cases, this means that a simpler proximityFaces filter would
have been more appropriate. To increase overall robustness, revert
to the simpler proximityFaces filter logic when the proximityRegions
would otherwise result in zero faces (globally seen).
- helps avoid the creation of small face cuts (near corners, edges)
that result in zero-size faces on output.
CONFIG: make default iso-surface topo regularisation less aggressive
- The full (diagcell) regularisation no longer includes cleaning of
non-manifold surfaces by removing open edges.
This can be selected by the 'clean' regularisation option instead.
ie, 'clean' = 'full' + erode open edges
ENH: additional debug modes for iso-surface topo
- with (debug & 8) dumps out a VTK file of the tets to be cut and the
calculated open edges.
- combines region-based and proximity-based filtering
proxityRegions (post-filter):
Checks the distance of the resulting faces against the original
search surface. Filters based on the area-weighted distance
of each topologically connected region.
If the area-weighted distance of a region is greater than
\c absProximity, the entire region is rejected.
STYLE: 'proxityFaces' as newer synonym for 'proximity' filter
- additional rcEdge(), rcEdges() methods for reverse order walk
- accept generic edge() method as alternative to faceEdge() for
single edge retrieval.
- edge() method with points -> returns the vector
- reduce the number of operations in edgeDirection methods
DEFEATURE: remove longestEdge global function
- deprecated and replaced by face::longestEdge() method (2017-04)
- additional dummy template parameter to assist with supporting
derived classes. Currently just used for string types, but can be
extended.
- provide hash specialization for various integer types.
Removes the need for any forwarding.
- change default hasher for HashSet/HashTable from 'string::hash'
to `Hash<Key>`. This avoids questionable hashing calls and/or
avoids compiler resolution problems.
For example,
HashSet<label>::hasher and labelHashSet::hasher now both properly
map to Hash<label> whereas previously HashSet<label> would have
persistently mapped to string::hash, which was incorrect.
- standardize internal hashing functors.
Functor name is 'hasher', as per STL set/map and the OpenFOAM
HashSet/HashTable definitions.
Older code had a local templated name, which added unnecessary
clutter and the template parameter was always defaulted.
For example,
Old: `FixedList<label, 3>::Hash<>()`
New: `FixedList<label, 3>::hasher()`
Unchanged: `labelHashSet::hasher()`
Existing `Hash<>` functor namings are still supported,
but deprecated.
- define hasher and Hash specialization for bitSet and PackedList
- add symmetric hasher for 'face'.
Starts with lowest vertex value and walks in the direction
of the next lowest value. This ensures that the hash code is
independent of face orientation and face rotation.
NB:
- some of keys for multiphase handling (eg, phasePairKey)
still use yet another function naming: `hash` and `symmHash`.
This will be targeted for alignment in the future.
- eliminates a potentially invalid code branch.
Since it essentially had the same internals as std::swap anyhow,
make that more evident.
ENH: use std::swap for basic types
- makes it clearer that they do not rely on any special semantics
- adds topology-based segmentation of the surfaces generated with
distance surfaces. This can occur when the surface terminates
close to a thin wall gap in the mesh; resulting in a cuts that
extend into the next region.
The cutting algorithm does not normally distinguish between these
types of "ragged" cuts, and legitimate ones (eg, cutting multiple
pipes). The additional segmentation controls provide for two common
scenarios:
largestRegion (pre-filter):
- The cut cells are checked for topological connectivity and the
region with the most number of cut cells is retained.
This handles the "ragged" edge problem.
nearestPoints (pre-filter):
- The cut cells split into regions, the regions closest to the
user-defined points are retained.
Uses maxDistance for additional control.
proximity (post-filter):
- Checks the resulting faces against the original search surface
and rejects faces with a distance greater than absProximity.
ENH: restructure distance surface geometric filtering
- prefilter cells, which can be used to adjust the distance
calculation in the far field to the real distance
(not the normal distance).
This can also be used to artificially sharpen the transition
between near/far regions, if required in the future.
- generic isoSurfaceBase. Provides simpler cell-cut detection and
various functions that can be used for iso-surfaces or when
preparing prefiltered input for iso-surfaces.
- rudimentary runtime selection
ENH: isoSurface Cell/Topo uses the isoSurfaceBase infrastructure
- simpler cell cut detection, common routines
- ensure that tetMatcher is only called once per cell
ENH: use indirect patch during edge erosion
- lower overhead, allows backtracking (future) if needed
- was previously via inheritance, but using member data instead
supports a more flexible internal switching of the storage. It also
ensures that data access remains safe, even in the absence of
an isoSurface.
- yields cleaner surfaces with few cuts.
Can use isoMethod keyword to select cell/point/topo if they prove
better for any particular case.
CONFIG: change default cuttingPlane algorithm from 'cell' to 'topo'
- bundles selection and control parameters used when creating
iso-surfaces. This simplifies selection and specification
- drop old compatibility handling of "cell" as a bool
- harmonize filter/regularisation flags for iso-surface
- for dictionary input, accept "isoMethod" and "isoAlgorithm" as being
synonymous. Using "isoMethod" is less subject to typing errors.
- (tet, pyr, hex) can be identified from their number of faces
and vertices. For these common shapes can use static `test()`
method instead of the virtual isA() method.
This is much cheaper for calling on an individual basis since
it avoids the overhead of constructing an object.
ENH: tetCell edge/reverseEdge (already had tetEdge)
- previously introduced `getOrDefault` as a dictionary _get_ method,
now complete the transition and use it everywhere instead of
`lookupOrDefault`. This avoids mixed usage of the two methods that
are identical in behaviour, makes for shorter names, and promotes
the distinction between "lookup" access (ie, return a token stream,
locate and return an entry) and "get" access (ie, the above with
conversion to concrete types such as scalar, label etc).