- support edge-ordering on construction, and additional methods:
- sort(), sorted(), unitVec(), collapse()
- null constructor initializes with -1, for consistency with face,
triFace and since it is generally much more useful that way.
- add some methods that allow edges to used somewhat more like hashes.
- count(), found(), insert(), erase()
Here is possible way to use that:
edge someEdge; // initializes with '-1' for both entries
if (someEdge.insert(pt1))
{
// added a new point label
}
... later
// unmark point on edge
someEdge.erase(pt2);
--
STYLE:
- use UList<point> instead of pointField for edge methods for flexibility.
The pointField include is retained, however, since many other routines
may be relying on it being included via edge.H
- suppress error messages that appear with zsh.
According to unset(1p), 'unset -f' unsets a function.
If the function was not previously defined, this is a no-op.
This is similar for zsh, but there it emits a warning if the
function was not previously defined.
- avoid 'local' in functions sources from etc/bashrc.
ksh does not support this.
- use 'command' shell builtin instead of 'type'.
Seems to be more consistent between shell flavours.
except turbulence and lagrangian which will also be updated shortly.
For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:
transportModel CrossPowerLaw;
CrossPowerLawCoeffs
{
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
}
BirdCarreauCoeffs
{
nu0 [0 2 -1 0 0 0 0] 1e-06;
nuInf [0 2 -1 0 0 0 0] 1e-06;
k [0 0 1 0 0 0 0] 0;
n [0 0 0 0 0 0 0] 1;
}
which allows a quick change between models, or using the simpler
transportModel CrossPowerLaw;
nu0 [0 2 -1 0 0 0 0] 0.01;
nuInf [0 2 -1 0 0 0 0] 10;
m [0 0 1 0 0 0 0] 0.4;
n [0 0 0 0 0 0 0] 3;
if quick switching between models is not required.
To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from
// Seeding method.
seedSampleSet uniform; //cloud; //triSurfaceMeshPointSet;
uniformCoeffs
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
to the simpler
// Seeding method.
seedSampleSet
{
type uniform;
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
which also support the "<type>Coeffs" form
// Seeding method.
seedSampleSet
{
type uniform;
uniformCoeffs
{
axis x; //distance;
// Note: tracks slightly offset so as not to be on a face
start (-1.001 -0.05 0.0011);
end (-1.001 -0.05 1.0011);
nPoints 20;
}
}
- if called from the top-level project directory ($WM_PROJECT_DIR)
default to using {applications,src} directories. This avoids
erroneous linking of etc/codeTemplates and avoids the lengthy
scanning of the tutorials directory
- use InfoSwitch to disable, or via static method.
- respect the state of the argList banner when deciding to emit
initialization information. Can otherwise end up with unwanted
output rubbish on things like foamDictionary and foamListTimes.
The typical topology is the one where boundary faces share non-consecutive
points (checkMesh reports this as 'Number of faces with non-consecutive shared points')
This is handled by no-extruding any of the vertices of both faces. Fixes#391.
Radiative heat transfer may now be added to any solver in which an energy
equation is solved at run-time rather than having to change the solver code.
For example, radiative heat transfer is now enabled in the SandiaD_LTS
reactingFoam tutorial by providing a constant/fvOptions file containing
radiation
{
type radiation;
libs ("libradiationModels.so");
}
and appropriate settings in the constant/radiationProperties file.
For example the porosity coefficients may now be specified thus:
porosity1
{
type DarcyForchheimer;
cellZone porosity;
d (5e7 -1000 -1000);
f (0 0 0);
coordinateSystem
{
type cartesian;
origin (0 0 0);
coordinateRotation
{
type axesRotation;
e1 (0.70710678 0.70710678 0);
e2 (0 0 1);
}
}
}
rather than
porosity1
{
type DarcyForchheimer;
active yes;
cellZone porosity;
DarcyForchheimerCoeffs
{
d (5e7 -1000 -1000);
f (0 0 0);
coordinateSystem
{
type cartesian;
origin (0 0 0);
coordinateRotation
{
type axesRotation;
e1 (0.70710678 0.70710678 0);
e2 (0 0 1);
}
}
}
}
support for which is maintained for backward compatibility.
For example the actuationDiskSource fvOption may now be specified
disk1
{
type actuationDiskSource;
fields (U);
selectionMode cellSet;
cellSet actuationDisk1;
diskDir (1 0 0); // Orientation of the disk
Cp 0.386;
Ct 0.58;
diskArea 40;
upstreamPoint (581849 4785810 1065);
}
rather than
disk1
{
type actuationDiskSource;
active on;
actuationDiskSourceCoeffs
{
fields (U);
selectionMode cellSet;
cellSet actuationDisk1;
diskDir (1 0 0); // Orientation of the disk
Cp 0.386;
Ct 0.58;
diskArea 40;
upstreamPoint (581849 4785810 1065);
}
}
but this form is supported for backward compatibility.
Main changes in the tutorial:
- General cleanup of the phaseProperties of unnecessary entries
- sensibleEnthalpy is used for both phases
- setTimeStep functionObject is used to set a sharp reduction in time step near the start of the injection
- Monitoring of pressure minimum and maximum
Patch contributed by Juho Peltola, VTT.
- This can be used as a convenient alternative to comparing against end().
Eg,
dictionaryConstructorTable::iterator cstrIter =
dictionaryConstructorTablePtr_->find(methodType);
if (cstrIter.found())
{
...
}
vs.
if (cstrIter != dictionaryConstructorTablePtr_->end())
{
...
}