snappyHexMesh produces a far better quality AMI interface using a cylindrical background mesh,
leading to much more robust performance, even on a relatively coarse mesh. The min/max AMI
weights remain close to 1 as the mesh moves, giving better conservation.
The rotating geometry template cases are configured with a blockMeshDict file for a cylindrical
background mesh aligned along the z-axis. The details of use are found in the README and
blockMeshDict files.
Uncommenting the patches provides a convenient way to use the patches in the background mesh
to define the external boundary of the final mesh. Replaces previous setup with a separate
blockMeshDict.extPatches file.
- this implies that jobControl is a user-resource for OpenFOAM.
It was previously located under $WM_PROJECT_INST_DIR/jobControl,
but few users will have write access there.
- an unset FOAM_JOB_DIR variable is treated as "~/.OpenFOAM/jobControl",
which can partially reduce environment clutter.
- provide argList::noJobInfo() to conveniently suppress job-info on an
individual basis for short-running utilities (eg, foamListTimes) to
avoid unneeded clutter.
These models have been particularly designed for use in the VoF solvers, both
incompressible and compressible. Currently constant and temperature dependent
surface tension models are provided but it easy to write models in which the
surface tension is evaluated from any fields held by the mesh database.
- ensure proper and sensible handling of empty names.
Eg, isDir(""), isFile("") are no-ops, and avoid file-stat
- rmDir:
* optional 'silent' option to suppress messages.
* removes all possible sub-entries, instead of just giving up on
the first problem encountered.
- reduced code duplication in etcFiles
ENH: provide WM_USER_RESOURCE_DIRNAME define (in foamVersion.H)
- this is still a hard-coded value, but at least centrally available
- permit SYSTEMMPI user adjustments via
etc/config.{csh,sh}/mpi-system
This can be a convenient place for setting up SYSTEMMPI for OpenFOAM
without adjusting bashrc, prefs.sh ...
- add a USERMPI type. This represents any generic mpi implementation.
The user is responsible for supplying an appropriate
wmake/rules/General/mplibUSERMPI file and managing all settings.
This type of setup can be useful in combination with specific build
systems (SPACK, EASYBUILD, etc) or module systems for which the MPI
variant is part of the installed configuration.
Created a base-class from contactAngleForce from which the
distributionContactAngleForce (for backward compatibility) and the new
temperatureDependentContactAngleForce are derived:
Description
Temperature dependent contact angle force
The contact angle in degrees is specified as a \c Function1 type, to
enable the use of, e.g. contant, polynomial, table values.
See also
Foam::regionModels::surfaceFilmModels::contactAngleForce
Foam::Function1Types
SourceFiles
temperatureDependentContactAngleForce.C
Demonstrates meshing a cylinder with hemispehrical ends using snappyHexMesh with
a polar background mesh that uses the point and edge projection feature of blockMesh.
The case prescribes a multiMotion on the cylinder, combining an oscillatingLinearMotion
and transverse rotatingMotion.
- lazier evaluation of project name and version based on the directory
name. Avoids heuristics based on directory names unless really needed.
- cope with alternative directory locations.
For example, OpenFOAM+VERSION etc.
The combination of the two above appears to be sufficient to open up
the directory naming possibilities.
- additional -list-test option (tests for existence of directory).
Off-centering is specified via the mandatory coefficient \c ocCoeff in the
range [0,1] following the scheme name e.g.
\verbatim
ddtSchemes
{
default CrankNicolson 0.9;
}
\endverbatim
or with an optional "ramp" function to transition from the Euler scheme to
Crank-Nicolson over a initial period to avoid start-up problems, e.g.
\verbatim
ddtSchemes
{
default CrankNicolson
ocCoeff
{
type scale;
scale linearRamp;
duration 0.01;
value 0.9;
};
}
\endverbatim
Note this functionality is experimental and the specification and implementation
may change if issues arise.