Previous commit solved: "mixture rho to volume-based in rhoThermo."
This proved to work correctly for rho=constant EoS but not for
idealGas. Fixes#2304. The previous gitlab issue was #1812.
- avoid deprecated autoPtr check
- bundle bool values in fvPatchField for compacter allocation
- change useImplicit to a set method taking an argument instead of
allowing direct access.
- all flags before loaders. Avoids "uninitialized when used here"
warning while preserving the field ownership logic.
- relocate override of updateT basicThermo into constructor body
for clearer logic and initialization
STYLE: plain bool instead of Switch for dpdt flag
Member function dKcdTbyKc in thermo.H is calculated from S and G at Pstd.
Thus dGdT was removed from the thermos.
- Add optional hRef, eRef and Tref as optional.
- Use new thermo to multiphase solver icoReactingMuliPhaseFoam
- Remove hRefConst and eRefConst thermos.
TUT: Updated tutorials
The generalizedNewtonian viscocity models were ported from
the org version and added to the laminar turbulence framework.
This allows use in compressible and incompressible solvers
through the turbulence dictionary under the laminar sub-dictionary.
The thermal laminar viscosity is taken from the thermo for solvers
that use thermo library or from the transportProperties dictionary
for incompressible solvers.
At the moment the option to include viscocity models through the
transportDict is still available.
The icoTabulated equation of state was ported from the org version.
STYLE: use 'model' instead of 'laminarModel' in tutorials
- previously introduced `getOrDefault` as a dictionary _get_ method,
now complete the transition and use it everywhere instead of
`lookupOrDefault`. This avoids mixed usage of the two methods that
are identical in behaviour, makes for shorter names, and promotes
the distinction between "lookup" access (ie, return a token stream,
locate and return an entry) and "get" access (ie, the above with
conversion to concrete types such as scalar, label etc).
Integration of VOF MULES new interfaces. Update of VOF solvers and all instances
of MULES in the code.
Integration of reactingTwoPhaseEuler and reactingMultiphaseEuler solvers and sub-models
Updating reactingEuler tutorials accordingly (most of them tested)
New eRefConst thermo used in tutorials. Some modifications at thermo specie level
affecting mostly eThermo. hThermo mostly unaffected
New chtMultiRegionTwoPhaseEulerFoam solver for quenching and tutorial.
Phases sub-models for reactingTwoPhaseEuler and reactingMultiphaseEuler were moved
to src/phaseSystemModels/reactingEulerFoam in order to be used by BC for
chtMultiRegionTwoPhaseEulerFoam.
Update of interCondensatingEvaporatingFoam solver.
- Eg, with surface writers now in surfMesh, there are fewer libraries
depending on conversion and sampling.
COMP: regularize linkage ordering and avoid some implicit linkage (#1238)
- similar to what erase() does, but as a mutable operation (#1180)
- replace basicThermo lookupAndCheckout (commit 880c98757d) with
the new objectRegistry::checkOut() method.
New name: findObject(), cfindObject()
Old name: lookupObjectPtr()
Return a const pointer or nullptr on failure.
New name: findObject()
Old name: --
Return a non-const pointer or nullptr on failure.
New name: getObjectPtr()
Old name: lookupObjectRefPtr()
Return a non-const pointer or nullptr on failure.
Can be called on a const object and it will perform a
const_cast.
- use these updated names and functionality in more places
NB: The older methods names are deprecated, but continue to be defined.
Thermo and reaction thermo macros have been renamed and refactored. If
the name is plural (make???Thermos) then it adds the model to all
selection tables. If not (make???Thermo) then it only adds to the
requested psi or rho table.
This mixture allows a reacting solver to be used with a single component
fluid without the additional case files usually required for reacting
thermodynamics.
reactionThermo: Instantiated more single component mixtures
ENH: reactionThermo: Select singleComponentMixture as pureMixture
A pureMixture can now be specified in a reacting solver. This further
enhances compatibility between non-reacting and reacting solvers.
To achieve this, mixtures now have a typeName function of the same form
as the lower thermodyanmic models. In addition, to avoid name clashes,
the reacting thermo make macros have been split into those that create
entries on multiple selection tables, and those that just add to the
reaction thermo table.
The combustion and chemistry models no longer select and own the
thermodynamic model; they hold a reference instead. The construction of
the combustion and chemistry models has been changed to require a
reference to the thermodyanmics, rather than the mesh and a phase name.
At the solver-level the thermo, turbulence and combustion models are now
selected in sequence. The cyclic dependency between the three models has
been resolved, and the raw-pointer based post-construction step for the
combustion model has been removed.
The old solver-level construction sequence (typically in createFields.H)
was as follows:
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(mesh)
);
psiReactionThermo& thermo = combustion->thermo();
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, thermo)
);
combustion->setTurbulence(*turbulence);
The new sequence is:
autoPtr<psiReactionThermo> thermo(psiReactionThermo::New(mesh));
// Create rho, U, phi, etc...
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New(rho, U, phi, *thermo)
);
autoPtr<combustionModels::psiCombustionModel> combustion
(
combustionModels::psiCombustionModel::New(*thermo, *turbulence)
);
ENH: combustionModel, chemistryModel: Simplified model selection
The combustion and chemistry model selection has been simplified so
that the user does not have to specify the form of the thermodynamics.
Examples of new combustion and chemistry entries are as follows:
In constant/combustionProperties:
combustionModel PaSR;
combustionModel FSD;
In constant/chemistryProperties:
chemistryType
{
solver ode;
method TDAC;
}
All the angle bracket parts of the model names (e.g.,
<psiThermoCombustion,gasHThermoPhysics>) have been removed as well as
the chemistryThermo entry.
The changes are mostly backward compatible. Only support for the
angle bracket form of chemistry solver names has been removed. Warnings
will print if some of the old entries are used, as the parts relating to
thermodynamics are now ignored.
ENH: combustionModel, chemistryModel: Simplified model selection
Updated all tutorials to the new format
STYLE: combustionModel: Namespace changes
Wrapped combustion model make macros in the Foam namespace and removed
combustion model namespace from the base classes. This fixes a namespace
specialisation bug in gcc 4.8. It is also somewhat less verbose in the
solvers.
This resolves bug report https://bugs.openfoam.org/view.php?id=2787
ENH: combustionModels: Default to the "none" model
When the constant/combustionProperties dictionary is missing, the solver
will now default to the "none" model. This is consistent with how
radiation models are selected.
Mixture molecular weight is now evaluated in heThermo like everything
else, relying on the low level specie mixing rules. Units have also been
corrected.
SpecieMixture: Pure virtual definition for W to prevent Clang warning