/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "pointLinear.H" #include "fvMesh.H" #include "volPointInterpolation.H" #include "triangle.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // template Foam::tmp> Foam::pointLinear:: correction ( const GeometricField& vf ) const { const fvMesh& mesh = this->mesh(); GeometricField pvf ( volPointInterpolation::New(mesh).interpolate(vf) ); tmp> tsfCorr = linearInterpolate(vf); Field& sfCorr = tsfCorr.ref().internalField(); const pointField& points = mesh.points(); const pointField& C = mesh.C(); const faceList& faces = mesh.faces(); const scalarField& w = mesh.weights(); const labelList& owner = mesh.owner(); const labelList& neighbour = mesh.neighbour(); forAll(sfCorr, facei) { point pi = w[owner[facei]]*C[owner[facei]] + (1.0 - w[owner[facei]])*C[neighbour[facei]]; const face& f = faces[facei]; scalar at = triangle ( pi, points[f[0]], points[f[f.size()-1]] ).mag(); scalar sumAt = at; Type sumPsip = at*(1.0/3.0)* ( sfCorr[facei] + pvf[f[0]] + pvf[f[f.size()-1]] ); for (label pointi=1; pointi ( pi, points[f[pointi]], points[f[pointi-1]] ).mag(); sumAt += at; sumPsip += at*(1.0/3.0)* ( sfCorr[facei] + pvf[f[pointi]] + pvf[f[pointi-1]] ); } sfCorr[facei] = sumPsip/sumAt - sfCorr[facei]; } typename GeometricField:: Boundary& bSfCorr = tsfCorr.ref().boundaryFieldRef(); forAll(bSfCorr, patchi) { fvsPatchField& pSfCorr = bSfCorr[patchi]; if (pSfCorr.coupled()) { const fvPatch& fvp = mesh.boundary()[patchi]; const scalarField& pWghts = mesh.weights().boundaryField()[patchi]; const labelUList& pOwner = fvp.faceCells(); const vectorField& pNbrC = mesh.C().boundaryField()[patchi]; forAll(pOwner, facei) { label own = pOwner[facei]; point pi = pWghts[facei]*C[own] + (1.0 - pWghts[facei])*pNbrC[facei]; const face& f = faces[facei+fvp.start()]; scalar at = triangle ( pi, points[f[0]], points[f[f.size()-1]] ).mag(); scalar sumAt = at; Type sumPsip = at*(1.0/3.0)* ( pSfCorr[facei] + pvf[f[0]] + pvf[f[f.size()-1]] ); for (label pointi=1; pointi ( pi, points[f[pointi]], points[f[pointi-1]] ).mag(); sumAt += at; sumPsip += at*(1.0/3.0)* ( pSfCorr[facei] + pvf[f[pointi]] + pvf[f[pointi-1]] ); } pSfCorr[facei] = sumPsip/sumAt - pSfCorr[facei]; } } else { pSfCorr = Zero; } } return tsfCorr; } namespace Foam { makeSurfaceInterpolationScheme(pointLinear); } // ************************************************************************* //