/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2012 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . Class Foam::basicThermo Description Abstract base-class for fluid and solid thermodynamic properties SourceFiles basicThermo.C \*---------------------------------------------------------------------------*/ #ifndef basicThermo_H #define basicThermo_H #include "volFields.H" #include "typeInfo.H" #include "IOdictionary.H" #include "autoPtr.H" #include "wordIOList.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { /*---------------------------------------------------------------------------*\ Class basicThermo Declaration \*---------------------------------------------------------------------------*/ class basicThermo : public IOdictionary { protected: // Protected data // Fields //- Pressure [Pa] volScalarField p_; //- Temperature [K] volScalarField T_; //- Laminar thermal diffusuvity [kg/m/s] volScalarField alpha_; //- Should the dpdt term be included in the enthalpy equation Switch dpdt_; //- Construct as copy (not implemented) basicThermo(const basicThermo&); public: //- Runtime type information TypeName("basicThermo"); //- Declare run-time constructor selection table declareRunTimeSelectionTable ( autoPtr, basicThermo, fvMesh, (const fvMesh& mesh), (mesh) ); // Constructors //- Construct from mesh basicThermo(const fvMesh&); //- Construct from mesh basicThermo(const fvMesh&, const dictionary&); // Selectors //- Generic lookup for each of the related thermodynamics packages template static typename Table::iterator lookupThermo ( const dictionary& thermoDict, Table* tablePtr ); //- Generic New for each of the related thermodynamics packages template static autoPtr New(const fvMesh&); //- Generic New for each of the related thermodynamics packages template static autoPtr New(const fvMesh&, const dictionary&); //- Specialisation of the Generic New for basicThermo static autoPtr New(const fvMesh&); //- Destructor virtual ~basicThermo(); // Member functions //- Check that the thermodynamics package is consistent // with energy forms supported by the application void validate ( const word& app, const word& ) const; //- Check that the thermodynamics package is consistent // with energy forms supported by the application void validate ( const word& app, const word&, const word& ) const; //- Check that the thermodynamics package is consistent // with energy forms supported by the application void validate ( const word& app, const word&, const word&, const word& ) const; //- Check that the thermodynamics package is consistent // with energy forms supported by the application void validate ( const word& app, const word&, const word&, const word&, const word& ) const; //- Split name of thermo package into a list of the components names static wordList splitThermoName ( const word& thermoName, const int nCmpt ); //- Update properties virtual void correct() = 0; //- Return true if the equation of state is incompressible // i.e. rho != f(p) virtual bool incompressible() const = 0; //- Return true if the equation of state is isochoric // i.e. rho = const virtual bool isochoric() const = 0; //- Should the dpdt term be included in the enthalpy equation Switch dpdt() const { return dpdt_; } // Access to thermodynamic state variables //- Pressure [Pa] // Non-const access allowed for transport equations virtual volScalarField& p(); //- Pressure [Pa] virtual const volScalarField& p() const; //- Density [kg/m^3] virtual tmp rho() const = 0; //- Enthalpy/Internal energy [J/kg] // Non-const access allowed for transport equations virtual volScalarField& he() = 0; //- Enthalpy/Internal energy [J/kg] virtual const volScalarField& he() const = 0; //- Enthalpy/Internal energy for cell-set [J/kg] virtual tmp he ( const scalarField& p, const scalarField& T, const labelList& cells ) const = 0; //- Enthalpy/Internal energy for patch [J/kg] virtual tmp he ( const scalarField& p, const scalarField& T, const label patchi ) const = 0; //- Chemical enthalpy [J/kg] virtual tmp hc() const = 0; //- Temperature from enthalpy/internal energy for cell-set virtual tmp THE ( const scalarField& h, const scalarField& p, const scalarField& T0, // starting temperature const labelList& cells ) const = 0; //- Temperature from enthalpy/internal energy for patch virtual tmp THE ( const scalarField& h, const scalarField& p, const scalarField& T0, // starting temperature const label patchi ) const = 0; // Fields derived from thermodynamic state variables //- Temperature [K] virtual const volScalarField& T() const; //- Heat capacity at constant pressure [J/kg/K] virtual tmp Cp() const = 0; //- Heat capacity at constant pressure for patch [J/kg/K] virtual tmp Cp ( const scalarField& p, const scalarField& T, const label patchi ) const = 0; //- Heat capacity at constant volume [J/kg/K] virtual tmp Cv() const = 0; //- Heat capacity at constant volume for patch [J/kg/K] virtual tmp Cv ( const scalarField& p, const scalarField& T, const label patchi ) const = 0; //- gamma = Cp/Cv [] virtual tmp gamma() const = 0; //- gamma = Cp/Cv for patch [] virtual tmp gamma ( const scalarField& p, const scalarField& T, const label patchi ) const = 0; //- Heat capacity at constant pressure/volume [J/kg/K] virtual tmp Cpv() const = 0; //- Heat capacity at constant pressure/volume for patch [J/kg/K] virtual tmp Cpv ( const scalarField& p, const scalarField& T, const label patchi ) const = 0; //- Heat capacity ratio [] virtual tmp CpByCpv() const = 0; //- Heat capacity ratio for patch [] virtual tmp CpByCpv ( const scalarField& p, const scalarField& T, const label patchi ) const = 0; // Access to transport state variables //- Thermal diffusivity for enthalpy of mixture [kg/m/s] virtual const volScalarField& alpha() const; // Fields derived from transport state variables //- Thermal diffusivity for temperature of mixture [J/m/s/K] virtual tmp kappa() const = 0; //- Thermal diffusivity of mixture for patch [J/m/s/K] virtual tmp kappa ( const label patchi ) const = 0; //- Effective thermal diffusivity of mixture [J/m/s/K] virtual tmp kappaEff ( const volScalarField& ) const = 0; //- Effective thermal diffusivity of mixture for patch [J/m/s/K] virtual tmp kappaEff ( const scalarField& alphat, const label patchi ) const = 0; //- Effective thermal diffusivity of mixture [J/m/s/K] virtual tmp alphaEff ( const volScalarField& alphat ) const = 0; //- Effective thermal diffusivity of mixture for patch [J/m/s/K] virtual tmp alphaEff ( const scalarField& alphat, const label patchi ) const = 0; //- Read thermophysicalProperties dictionary virtual bool read(); }; // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // } // End namespace Foam // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // #ifdef NoRepository # include "basicThermoTemplates.C" #endif // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // #endif // ************************************************************************* //