/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd. \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Global execFlowFunctionObjects Description Execute the set of functionObjects specified in the selected dictionary (which defaults to system/controlDict) for the selected set of times. The flow (p-U) and optionally turbulence fields are available for the function objects to operate on allowing forces and other related properties to be calculated in addition to cutting planes etc. \*---------------------------------------------------------------------------*/ #include "calc.H" #include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H" #include "incompressible/turbulenceModel/turbulenceModel.H" #include "incompressible/LESmodel/LESmodel.H" #include "basicThermo.H" #include "compressible/turbulenceModel/turbulenceModel.H" #include "compressible/LESmodel/LESmodel.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { void execFlowFunctionObjects(const argList& args, const Time& runTime) { if (args.options().found("dict")) { fileName dictName(args.options()["dict"]); IOdictionary dict ( IOobject ( dictName, runTime.system(), runTime, IOobject::MUST_READ ) ); functionObjectList fol(runTime, dict); fol.start(); fol.execute(); } else { functionObjectList fol(runTime, runTime.controlDict()); fol.start(); fol.execute(); } } } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // void Foam::calc(const argList& args, const Time& runTime, const fvMesh& mesh) { Info<< " Reading phi" << endl; surfaceScalarField phi ( IOobject ( "phi", runTime.timeName(), mesh, IOobject::MUST_READ ), mesh ); Info<< " Reading U" << endl; volVectorField U ( IOobject ( "U", runTime.timeName(), mesh, IOobject::MUST_READ ), mesh ); Info<< " Reading p" << endl; volScalarField p ( IOobject ( "p", runTime.timeName(), mesh, IOobject::MUST_READ ), mesh ); if (phi.dimensions() == dimensionSet(0, 3, -1, 0, 0)) { IOobject turbulencePropertiesHeader ( "turbulenceProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); if (turbulencePropertiesHeader.headerOk()) { IOdictionary turbulenceProperties ( turbulencePropertiesHeader ); singlePhaseTransportModel laminarTransport(U, phi); if (turbulenceProperties.found("turbulenceModel")) { autoPtr turbulenceModel ( turbulenceModel::New(U, phi, laminarTransport) ); execFlowFunctionObjects(args, runTime); } else if (turbulenceProperties.found("LESmodel")) { autoPtr sgsModel ( LESmodel::New(U, phi, laminarTransport) ); execFlowFunctionObjects(args, runTime); } else { FatalErrorIn(args.executable()) << "Cannot find turbulence model type in " << "turbulenceModel dictionary" << nl << exit(FatalError); } } else { IOdictionary transportProperties ( IOobject ( "transportProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ) ); dimensionedScalar nu ( transportProperties.lookup("nu") ); execFlowFunctionObjects(args, runTime); } } else if (phi.dimensions() == dimensionSet(1, 0, -1, 0, 0)) { autoPtr thermo ( basicThermo::New(mesh) ); volScalarField rho ( IOobject ( "rho", runTime.timeName(), mesh ), thermo->rho() ); IOobject turbulencePropertiesHeader ( "turbulenceProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE, false ); if (turbulencePropertiesHeader.headerOk()) { IOdictionary turbulenceProperties ( turbulencePropertiesHeader ); if (turbulenceProperties.found("turbulenceModel")) { autoPtr turbulenceModel ( compressible::turbulenceModel::New ( rho, U, phi, thermo() ) ); execFlowFunctionObjects(args, runTime); } else if (turbulenceProperties.found("LESmodel")) { autoPtr sgsModel ( compressible::LESmodel::New(rho, U, phi, thermo()) ); execFlowFunctionObjects(args, runTime); } else { FatalErrorIn(args.executable()) << "Cannot find turbulence model type in " << "turbulenceModel dictionary" << nl << exit(FatalError); } } else { IOdictionary transportProperties ( IOobject ( "transportProperties", runTime.constant(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ) ); dimensionedScalar mu ( transportProperties.lookup("mu") ); execFlowFunctionObjects(args, runTime); } } else { FatalErrorIn(args.executable()) << "Incorrect dimensions of phi: " << phi.dimensions() << nl << exit(FatalError); } } // ************************************************************************* //