/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2016-2017 Wikki Ltd
Copyright (C) 2019-2023 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
Description
Finite-Area matrix basic solvers.
\*---------------------------------------------------------------------------*/
#include "PrecisionAdaptor.H"
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template
void Foam::faMatrix::setComponentReference
(
const label patchi,
const label facei,
const direction cmpt,
const scalar value
)
{
internalCoeffs_[patchi][facei].component(cmpt) +=
diag()[psi_.mesh().boundary()[patchi].faceCells()[facei]];
boundaryCoeffs_[patchi][facei].component(cmpt) +=
diag()[psi_.mesh().boundary()[patchi].faceCells()[facei]]*value;
}
template
Foam::SolverPerformance Foam::faMatrix::solve
(
const dictionary& solverControls
)
{
DebugInFunction
<< "solving faMatrix"
<< endl;
const int logLevel =
solverControls.getOrDefault
(
"log",
SolverPerformance::debug
);
auto& psi =
const_cast&>(psi_);
SolverPerformance solverPerfVec
(
"faMatrix::solve",
psi.name()
);
scalarField saveDiag(diag());
Field source(source_);
addBoundarySource(source);
// Note: make a copy of interfaces: no longer a reference
lduInterfaceFieldPtrsList interfaces =
psi_.boundaryField().scalarInterfaces();
for (direction cmpt = 0; cmpt < Type::nComponents; ++cmpt)
{
// copy field and source
scalarField psiCmpt(psi_.primitiveField().component(cmpt));
addBoundaryDiag(diag(), cmpt);
scalarField sourceCmpt(source.component(cmpt));
FieldField bouCoeffsCmpt
(
boundaryCoeffs_.component(cmpt)
);
FieldField intCoeffsCmpt
(
internalCoeffs_.component(cmpt)
);
// Use the initMatrixInterfaces and updateMatrixInterfaces to correct
// bouCoeffsCmpt for the explicit part of the coupled boundary
// conditions
{
PrecisionAdaptor sourceCmpt_ss(sourceCmpt);
ConstPrecisionAdaptor psiCmpt_ss(psiCmpt);
const label startRequest = UPstream::nRequests();
initMatrixInterfaces
(
true,
bouCoeffsCmpt,
interfaces,
psiCmpt_ss(),
sourceCmpt_ss.ref(),
cmpt
);
updateMatrixInterfaces
(
true,
bouCoeffsCmpt,
interfaces,
psiCmpt_ss(),
sourceCmpt_ss.ref(),
cmpt,
startRequest
);
}
solverPerformance solverPerf;
// Solver call
solverPerf = lduMatrix::solver::New
(
psi_.name() + pTraits::componentNames[cmpt],
*this,
bouCoeffsCmpt,
intCoeffsCmpt,
interfaces,
solverControls
)->solve(psiCmpt, sourceCmpt, cmpt);
if (logLevel)
{
solverPerf.print(Info);
}
solverPerfVec.replace(cmpt, solverPerf);
solverPerfVec.solverName() = solverPerf.solverName();
psi.primitiveFieldRef().replace(cmpt, psiCmpt);
diag() = saveDiag;
}
psi.correctBoundaryConditions();
psi.mesh().data().setSolverPerformance(psi.name(), solverPerfVec);
return solverPerfVec;
}
template
Foam::SolverPerformance Foam::faMatrix::faSolver::solve()
{
return solve(faMat_.solverDict());
}
template
Foam::SolverPerformance Foam::faMatrix::solve(const word& name)
{
return this->solve(solverDict(name));
}
template
Foam::SolverPerformance Foam::faMatrix::solve()
{
return this->solve(solverDict());
}
template
Foam::tmp> Foam::faMatrix::residual() const
{
auto tres = tmp>::New(source_);
auto& res = tres().ref();
addBoundarySource(res);
// Loop over field components
for (direction cmpt = 0; cmpt < Type::nComponents; ++cmpt)
{
scalarField psiCmpt(psi_.internalField().component(cmpt));
scalarField boundaryDiagCmpt(psi_.size(), Zero);
addBoundaryDiag(boundaryDiagCmpt, cmpt);
FieldField bouCoeffsCmpt
(
boundaryCoeffs_.component(cmpt)
);
res.replace
(
cmpt,
lduMatrix::residual
(
psiCmpt,
res.component(cmpt) - boundaryDiagCmpt*psiCmpt,
bouCoeffsCmpt,
psi_.boundaryField().scalarInterfaces(),
cmpt
)
);
}
return tres;
}
// ************************************************************************* //