/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd. \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA InNamespace Foam Description 3D tensor transformation operations. \*---------------------------------------------------------------------------*/ #ifndef transform_H #define transform_H #include "tensor.H" #include "mathematicalConstants.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // inline tensor rotationTensor ( const vector& n1, const vector& n2 ) { return (n1 & n2)*I + (1 - (n1 & n2))*sqr(n1 ^ n2)/(magSqr(n1 ^ n2) + VSMALL) + (n2*n1 - n1*n2); } inline label transform(const tensor&, const label i) { return i; } inline scalar transform(const tensor&, const scalar s) { return s; } template inline Vector transform(const tensor& tt, const Vector& v) { return tt & v; } template inline Tensor transform(const tensor& tt, const Tensor& t) { //return tt & t & tt.T(); return Tensor ( (tt.xx()*t.xx() + tt.xy()*t.yx() + tt.xz()*t.zx())*tt.xx() + (tt.xx()*t.xy() + tt.xy()*t.yy() + tt.xz()*t.zy())*tt.xy() + (tt.xx()*t.xz() + tt.xy()*t.yz() + tt.xz()*t.zz())*tt.xz(), (tt.xx()*t.xx() + tt.xy()*t.yx() + tt.xz()*t.zx())*tt.yx() + (tt.xx()*t.xy() + tt.xy()*t.yy() + tt.xz()*t.zy())*tt.yy() + (tt.xx()*t.xz() + tt.xy()*t.yz() + tt.xz()*t.zz())*tt.yz(), (tt.xx()*t.xx() + tt.xy()*t.yx() + tt.xz()*t.zx())*tt.zx() + (tt.xx()*t.xy() + tt.xy()*t.yy() + tt.xz()*t.zy())*tt.zy() + (tt.xx()*t.xz() + tt.xy()*t.yz() + tt.xz()*t.zz())*tt.zz(), (tt.yx()*t.xx() + tt.yy()*t.yx() + tt.yz()*t.zx())*tt.xx() + (tt.yx()*t.xy() + tt.yy()*t.yy() + tt.yz()*t.zy())*tt.xy() + (tt.yx()*t.xz() + tt.yy()*t.yz() + tt.yz()*t.zz())*tt.xz(), (tt.yx()*t.xx() + tt.yy()*t.yx() + tt.yz()*t.zx())*tt.yx() + (tt.yx()*t.xy() + tt.yy()*t.yy() + tt.yz()*t.zy())*tt.yy() + (tt.yx()*t.xz() + tt.yy()*t.yz() + tt.yz()*t.zz())*tt.yz(), (tt.yx()*t.xx() + tt.yy()*t.yx() + tt.yz()*t.zx())*tt.zx() + (tt.yx()*t.xy() + tt.yy()*t.yy() + tt.yz()*t.zy())*tt.zy() + (tt.yx()*t.xz() + tt.yy()*t.yz() + tt.yz()*t.zz())*tt.zz(), (tt.zx()*t.xx() + tt.zy()*t.yx() + tt.zz()*t.zx())*tt.xx() + (tt.zx()*t.xy() + tt.zy()*t.yy() + tt.zz()*t.zy())*tt.xy() + (tt.zx()*t.xz() + tt.zy()*t.yz() + tt.zz()*t.zz())*tt.xz(), (tt.zx()*t.xx() + tt.zy()*t.yx() + tt.zz()*t.zx())*tt.yx() + (tt.zx()*t.xy() + tt.zy()*t.yy() + tt.zz()*t.zy())*tt.yy() + (tt.zx()*t.xz() + tt.zy()*t.yz() + tt.zz()*t.zz())*tt.yz(), (tt.zx()*t.xx() + tt.zy()*t.yx() + tt.zz()*t.zx())*tt.zx() + (tt.zx()*t.xy() + tt.zy()*t.yy() + tt.zz()*t.zy())*tt.zy() + (tt.zx()*t.xz() + tt.zy()*t.yz() + tt.zz()*t.zz())*tt.zz() ); } template inline SphericalTensor transform ( const tensor& tt, const SphericalTensor& st ) { return st; } template inline SymmTensor transform(const tensor& tt, const SymmTensor& st) { return SymmTensor ( (tt.xx()*st.xx() + tt.xy()*st.xy() + tt.xz()*st.xz())*tt.xx() + (tt.xx()*st.xy() + tt.xy()*st.yy() + tt.xz()*st.yz())*tt.xy() + (tt.xx()*st.xz() + tt.xy()*st.yz() + tt.xz()*st.zz())*tt.xz(), (tt.xx()*st.xx() + tt.xy()*st.xy() + tt.xz()*st.xz())*tt.yx() + (tt.xx()*st.xy() + tt.xy()*st.yy() + tt.xz()*st.yz())*tt.yy() + (tt.xx()*st.xz() + tt.xy()*st.yz() + tt.xz()*st.zz())*tt.yz(), (tt.xx()*st.xx() + tt.xy()*st.xy() + tt.xz()*st.xz())*tt.zx() + (tt.xx()*st.xy() + tt.xy()*st.yy() + tt.xz()*st.yz())*tt.zy() + (tt.xx()*st.xz() + tt.xy()*st.yz() + tt.xz()*st.zz())*tt.zz(), (tt.yx()*st.xx() + tt.yy()*st.xy() + tt.yz()*st.xz())*tt.yx() + (tt.yx()*st.xy() + tt.yy()*st.yy() + tt.yz()*st.yz())*tt.yy() + (tt.yx()*st.xz() + tt.yy()*st.yz() + tt.yz()*st.zz())*tt.yz(), (tt.yx()*st.xx() + tt.yy()*st.xy() + tt.yz()*st.xz())*tt.zx() + (tt.yx()*st.xy() + tt.yy()*st.yy() + tt.yz()*st.yz())*tt.zy() + (tt.yx()*st.xz() + tt.yy()*st.yz() + tt.yz()*st.zz())*tt.zz(), (tt.zx()*st.xx() + tt.zy()*st.xy() + tt.zz()*st.xz())*tt.zx() + (tt.zx()*st.xy() + tt.zy()*st.yy() + tt.zz()*st.yz())*tt.zy() + (tt.zx()*st.xz() + tt.zy()*st.yz() + tt.zz()*st.zz())*tt.zz() ); } template inline Type1 transformMask(const Type2& t) { return t; } template<> inline sphericalTensor transformMask(const tensor& t) { return sph(t); } template<> inline symmTensor transformMask(const tensor& t) { return symm(t); } //- Estimate angle of vec in coordinate system (e0, e1, e0^e1). // Is guaranteed to return increasing number but is not correct // angle. Used for sorting angles. All input vectors need to be normalized. // // Calculates scalar which increases with angle going from e0 to vec in // the coordinate system e0, e1, e0^e1 // // Jumps from 2PI -> 0 at -SMALL so parallel vectors with small rounding errors // should hopefully still get the same quadrant. // inline scalar pseudoAngle ( const vector& e0, const vector& e1, const vector& vec ) { scalar cos = vec & e0; scalar sin = vec & e1; if (sin < -SMALL) { return (3.0 + cos)*constant::mathematical::piByTwo; } else { return (1.0 - cos)*constant::mathematical::piByTwo; } } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // } // End namespace Foam // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // #endif // ************************************************************************* //